Some quantum Lie algebras of type D_{n} positive

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 362271
(http://iopscience.iop.org/0305-4470/36/9/306)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.89
The article was downloaded on 02/06/2010 at 17:25

Please note that terms and conditions apply.

Some quantum Lie algebras of type $D_{\boldsymbol{n}}$ positive

César Bautista ${ }^{1}$ and María Araceli Juaréz-Ramírez ${ }^{2}$
${ }^{1}$ Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, Edif 135, 14 sur y Av San Claudio, Ciudad Universitaria, Puebla Pue. CP 72570, Mexico
${ }^{2}$ Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Edif 158 Av San Claudio y Rio Verde sn Ciudad Universitaria, Puebla Pue. CP 72570, Mexico
E-mail: bautista@cs.buap.mx and Araceli.Juarez@fcfcm.buap.mx

Received 26 June 2002, in final form 19 November 2002
Published 19 February 2003
Online at stacks.iop.org/JPhysA/36/2271

Abstract

A quantum Lie algebra is constructed within the positive part of the DrinfeldJimbo quantum group of type D_{n}. Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D_{n} positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincaré-Birkhoff-Witt theorem (basis) is still true.

PACS numbers: $02.20 . \mathrm{Uw}, 02.10 . \mathrm{Sv}, 02.10 . \mathrm{Pn}$

1. Introduction

In [1] Lyubashenko and Sudbery called for generalizations of Lie algebras. The main problem is to find a finite-dimensional vector space within the Drinfeld-Jimbo quantum groups [2, 3] with a binary operation satisfying generalized antisymmetry and generalized Jacobi identity in such a way that its universal enveloping algebra coincides with the quantum group; such structures will be called quantum Lie algebras. Some additional constraints are required, for instance, the existence of a Poincaré-Birkhoff-Witt basis or the adjoint map constructed by commutators and by the Hopf algebra structure.

Delius et al $[4,5]$ suggested using quantum Lie algebras for the understanding of some properties (quantum mass or charge ratios and exact S-matrices for elementary particles) of quantum integrable models, since integrable models can be studied after classical Lie algebras. Similarly, a q-deformed gauge theory is proposed by Sudbery [6], based on quantum Lie algebras of type A_{n}; extension to other classes of quantum Lie algebras (like the one proposed here) remains to be investigated.

Conformal field theories in two dimensions, which give the low energy limit of string theory, have been found to have quantum group symmetries related to monodromy transformations in Wess-Zumino-Witten models, for $S U(2)$ in [7] and then generalized for semi-simple algebras in [8]. In these works some kind of generalized commutators (q commutators) appear. A natural goal is to find the properties of such q-commutators under the guide of classical Lie algebras.

Another application of the quantum Lie algebra formalism appears in the theory of error correction codes in quantum computation [9].

From a mathematical point of view, the quantum Lie algebras are useful because they allow us to reduce problems on the infinite-dimensional quantum group to the finite-dimensional quantum Lie algebra [10]. For instance, we show that the problem of finding Poincaré-Birkhoff-Witt bases in the positive part of the Drinfeld-Jimbo quantum group of type D_{n} positive is reduced to finding a representation of our finite-dimensional quantum Lie algebra on the related q-symmetric algebra.

Just like the quantum groups, there are two classes of quantum Lie algebras; those related to the Woronowicz quantum groups and those related to Drinfeld-Jimbo quantum groups. While the first have well-established generalizations of the antisymmetry property and the Jacobi identity, in the latter case different notions of quantum antisymmetry and quantum Jacobi identity appear. One might say this is why the theory of Woronowicz's quantum Lie algebras has got more attention than that of Drinfeld-Jimbo. Because, after all, quantum antisymmetry and quantum Jacobi identity could lead to a quantum Lie algebra theory by analogy (or deformation) to the classical case.

In this paper we are interested in the construction of a quantum Lie algebra by means of q-commutators for $U_{q}^{+} \mathfrak{o}(2 n)$ the positive part of the Drinfeld-Jimbo quantum group of type D_{n}. We show that such a construction is feasible and we obtain a finitedimensional vector space with an additional structure satisfying generalized antisymmetry and a generalized Jacobi identity such that its universal enveloping algebra (generalized) is $U_{q}^{+} \mathfrak{o}(2 n)$. But, in addition to a binary operation, which is a quadratic-linear operator, we obtain two other operators, which are quadratic-quadratic and quadratic-cubic, respectively. However, we can prove the Poincaré-Birkhoff-Witt theorem over such structures. Further, since a bilinear form is a quadratic-scalar operator, our results can be applied to Clifford algebras.

In order to keep the notation under control, we make use of some diagrammatic notation similar to the quivers (oriented graphs) appearing in the theory of representation of finite algebras [11].

Quivers related to quantum groups were used by Cibils [12, 13] and Ringel [14]. However, in this paper our approach is different. We start from a generalized Jacobi identity for the generalized commutator $f(x, y)=x y-\sigma(x y)$ which is valid in every associative algebra analogous to the Jacobi identity that becomes the associative algebra, a Lie algebra with commutator $[x, y]=x y-y x$.

The properties of our quantum $\mathfrak{o}^{+}(2 n)$ are proved by mathematical induction over n. First, the properties for $(n=4)$ quantum $\mathfrak{o}^{+}(8)$ follow by straightforward calculations, then quantum $\mathfrak{o}^{+}(2 n)$ for $n>4$ satisfies the same equations as quantum $\mathfrak{o}^{+}(8)$ because, in some sense, quantum $\mathfrak{o}(2 n)$ is covered by copies of quantum $\mathfrak{o}^{+}(8)$ (see theorem 2).

In the literature there are already some proposals for quantum Lie algebras of type D_{n} : quantum Lie algebras defined by a generalization of the Friedrich criterion (characterization of the Lie algebra structure by primitives) from Kharchenko [15], but without antisymmetry or a Jacobi identity; a quantum Lie algebra due to Delius et al [16] with an antisymmetry but without a Jacobi identity, among others.

The organization of this paper is as follows. We start by applying a generalized Jacobi identity to some generators of $U_{q}^{+}\left(s l_{4}\right)$, the positive part of the Drinfeld-Jimbo quantum group of type A_{3}. In section 3 we define the structure of quantum $\mathfrak{o}(2 n)$ and prove that, in some sense, $U_{q}^{+} \mathfrak{o}(8)$ is a universal enveloping algebra of quantum $\mathfrak{o}^{+}(8)$. A generalization for this result is proved in section 4 . The definition of a generalized Lie algebra (called σ-Lie algebra), which also generalizes classical Clifford algebras, as well as a representation of our generalized Lie algebra on the q-symmetric algebra, just like in the classical case, is given in section 5. In section 6 , we define morphisms of σ-Lie algebras and explain why the proof that quantum $\mathfrak{o}(2 n)$ is a σ-Lie algebra, is an integer programming problem. Finally, in section 7, we discuss the differences between quantum Lie algebras from $[10,16]$ and ours.

2. Non-braided identities and quantum $U^{+}\left(s l_{4}\right)$

Our starting point is the identity (1), which holds in every associative algebra. The notation is the following. Assume that F is a commutative ring, L, M, N three F-modules and $f: M \rightarrow N$ an F-linear map. We denote $f_{1}=f \otimes I d: M \otimes L \rightarrow N \otimes L$ and $f_{2}=I d \otimes f: L \otimes M \rightarrow L \otimes N$ where $I d: L \rightarrow L$ is the identity map.

Proposition 1. Let A be an associative algebra, M a submodule of the module A, m the multiplication map of A and $\sigma: M \otimes M \rightarrow M \otimes M$ a linear map. Then, if $f=m(I d-\sigma): M \otimes M \rightarrow A$, it follows
$f\left(f_{1}-f_{2}\right)=m\left(f_{1} \sigma_{2}-f_{2} \sigma_{1}+\sigma f_{2}-\sigma f_{1}+f_{2} \sigma_{1} \sigma_{2}-f_{1} \sigma_{2} \sigma_{1}\right)-m m_{1}\left(\sigma_{2} \sigma_{1} \sigma_{2}-\sigma_{1} \sigma_{2} \sigma_{1}\right)$.

Proof. This proposition is proved by straightforward calculations.
In fact, (1) is a generalization of the Jacobi identity, because it is equivalent to

$$
\begin{gather*}
f\left(f_{2}-f_{1}+f_{1} \sigma_{2}\right)=m\left(\left(f_{1} \sigma_{2} \sigma_{1}+f_{2} \sigma_{1}-\sigma f_{2}-\sigma f_{1} \sigma_{2}\right)+\left(\sigma f_{1}-f_{2} \sigma_{1} \sigma_{2}\right)\right) \\
+m m_{1}\left(\sigma_{2} \sigma_{1} \sigma_{2}-\sigma_{1} \sigma_{2} \sigma_{1}\right) \tag{2}
\end{gather*}
$$

therefore, if σ stands for the usual flip $x \otimes y \mapsto y \otimes x$ and $M=A$ then (2) becomes the classical Jacobi identity. A more general case is when $M=A$ and σ is only required to satisfy the braid equation $\sigma_{2} \sigma_{1} \sigma_{2}=\sigma_{1} \sigma_{2} \sigma_{1}$ and

$$
\begin{equation*}
\sigma f_{2}+\sigma f_{1} \sigma_{2}=f_{2} \sigma_{1}+f_{1} \sigma_{2} \sigma_{1} \quad \text { and } \quad \sigma f_{1}=f_{2} \sigma_{1} \sigma_{2} \tag{3}
\end{equation*}
$$

then (2) becomes the generalized Jacobi identity discovered by Woronowicz within the frame of differential calculus on quantum groups [17]. Also, the conditions (3) appeared in [17]. The identity (1) was taken from [18].

It is well known that semi-simple Lie algebras are made of copies of $s l_{n}$ pasted together with additional relations. In the quantum case, the Drinfeld-Jimbo quantum groups are made of copies of quantizations of the universal enveloping algebra of $s l_{n}$ pasted together with additional relations. The following q-commutators in $U_{q}^{+}\left(s l_{4}\right)$ are a part of the relations of the Drinfeld-Jimbo quantum group of type D_{n}.

Lemma 1. Let F be a commutative ring with unit and $q \in F^{*}$. Let $U_{q}^{+}\left(s l_{4}\right)$ be the associative F-algebra generated by $\alpha_{i}, i=1,2,3$, with relations
$\alpha_{1} \alpha_{3}-\alpha_{3} \alpha_{1}=0 \quad \alpha_{i} \alpha_{j}^{2}-\left(q+q^{-1}\right) \alpha_{j} \alpha_{i} \alpha_{j}+\alpha_{j}^{2} \alpha_{i}=0 \quad|i-j|=1$
then there exist generators $\alpha_{i j} \in U_{q}^{+}\left(s l_{4}\right), 1 \leqslant i<j \leqslant 4$, with relations

$m\left(\alpha_{12} \otimes \alpha_{13}-\sigma\left(\alpha_{12} \otimes \alpha_{13}\right)\right)=0$	$m\left(\alpha_{12} \otimes \alpha_{23}-\sigma\left(\alpha_{12} \otimes \alpha_{23}\right)\right)=\alpha_{13}$
$m\left(\alpha_{12} \otimes \alpha_{14}-\sigma\left(\alpha_{12} \otimes \alpha_{14}\right)\right)=0$	$m\left(\alpha_{12} \otimes \alpha_{24}-\sigma\left(\alpha_{12} \otimes \alpha_{24}\right)\right)=\alpha_{14}$
$m\left(\alpha_{12} \otimes \alpha_{34}-\sigma\left(\alpha_{12} \otimes \alpha_{34}\right)\right)=0$	$m\left(\alpha_{13} \otimes \alpha_{23}-\sigma\left(\alpha_{13} \otimes \alpha_{23}\right)\right)=0$
$m\left(\alpha_{13} \otimes \alpha_{14}-\sigma\left(\alpha_{13} \otimes \alpha_{14}\right)\right)=0$	$m\left(\alpha_{13} \otimes \alpha_{34}-\sigma\left(\alpha_{13} \otimes \alpha_{34}\right)\right)=\alpha_{14}$
$m\left(\alpha_{13} \otimes \alpha_{24}-\sigma\left(\alpha_{13} \otimes \alpha_{24}\right)\right)=\left(q-q^{-1}\right)$	$m\left(\alpha_{23} \otimes \alpha_{14}\right)$
$m\left(\alpha_{23} \otimes \alpha_{14}-\sigma\left(\alpha_{23} \otimes \alpha_{14}\right)\right)=0$	$m\left(\alpha_{23} \otimes \alpha_{24}-\sigma\left(\alpha_{23} \otimes \alpha_{24}\right)\right)=0$
$m\left(\alpha_{23} \otimes \alpha_{34}-\sigma\left(\alpha_{23} \otimes \alpha_{34}\right)\right)=\alpha_{24}$	$m\left(\alpha_{14} \otimes \alpha_{24}-\sigma\left(\alpha_{14} \otimes \alpha_{24}\right)\right)=0$
$m\left(\alpha_{14} \otimes \alpha_{34}-\sigma\left(\alpha_{14} \otimes \alpha_{34}\right)\right)=0$	$m\left(\alpha_{24} \otimes \alpha_{24}-\sigma\left(\alpha_{24} \otimes \alpha_{34}\right)\right)=0$

where m is the multiplication map of $U_{q}^{+}\left(s l_{4}\right), \sigma\left(\alpha_{i j} \otimes \alpha_{a b}\right)=q^{c_{i, a b}} \alpha_{a b} \otimes \alpha_{i j}, c_{i j, a b}=$ $\delta_{i a}-\delta_{i b}-\delta_{j a}+\delta_{j b}$ and δ is the Kronecker delta.

Proof. First we define $\alpha_{i(i+1)}=\alpha_{i}, i=1,2,3$, and $\alpha_{13}=\alpha_{12} \alpha_{23}-q^{-1} \alpha_{23} \alpha_{12}, \alpha_{24}=$ $\alpha_{23} \alpha_{34}-q^{-1} \alpha_{34} \alpha_{23}$. Then using (1) on $\alpha_{12} \otimes \alpha_{23} \otimes \alpha_{34}$, we get

$$
\alpha_{13} \alpha_{34}-q^{-1} \alpha_{34} \alpha_{13}=\alpha_{12} \alpha_{24}-q^{-1} \alpha_{24} \alpha_{14}
$$

We put $\alpha_{14}=\alpha_{13} \alpha_{34}-q^{-1} \alpha_{34} \alpha_{13}$. Using again (1) on $\alpha_{12} \otimes \alpha_{23} \otimes \alpha_{24}$ and afterwards on $\alpha_{13} \otimes \alpha_{23} \otimes \alpha_{34}$, we obtain

$$
\alpha_{13} \alpha_{24}-\alpha_{24} \alpha_{13}=\left(q-q^{-1}\right) \alpha_{23} \alpha_{14}
$$

and so on.

Using the same technique one can prove
Lemma 2. There exist generators $\beta_{i j} \in U_{q}^{+}\left(s l_{4}\right), 1 \leqslant i<j \leqslant 4$, with relations

$$
\begin{array}{ll}
\beta_{12} \beta_{13}-q^{-1} \beta_{13} \beta_{12}=0 & \beta_{12} \beta_{23}-q \beta_{23} \beta_{12}=\beta_{13} \\
\beta_{12} \beta_{14}-q^{-1} \beta_{14} \beta_{12}=0 & \beta_{12} \beta_{24}-q \beta_{24} \beta_{12}=\beta_{14} \\
\beta_{12} \beta_{34}-\beta_{34} \beta_{12}=0 & \beta_{13} \beta_{23}-q^{-1} \beta_{23} \beta_{13}=0 \\
\beta_{13} \beta_{14}-q \beta_{13} \beta_{23}=0 & \beta_{13} \beta_{24}-\beta_{13} \beta_{24}=0 \\
\beta_{13} \beta_{34}-q^{-1} \beta_{13} \beta_{34}=\beta_{14} & \beta_{23} \beta_{14}-\beta_{23} \beta_{14}=\left(q-q^{-1}\right) \beta_{13} \beta_{24} \\
\beta_{23} \beta_{24}-q \beta_{23} \beta_{24}=0 & \beta_{23} \beta_{34}-q^{-1} \beta_{23} \beta_{34}=\beta_{24} .
\end{array}
$$

3. Quantum D_{n} positive

We are dealing with the Drinfeld-Jimbo quantum groups in Lusztig form [19] over commutative rings. This means that, if F is a commutative ring with unit, $q \in F^{*}$ and G is the Dynkin diagram of type $D_{n}, n \geqslant 4$, with nodes labelled $1,2, \ldots, n$ and ramification node labelled $n-2$, then the Drinfeld-Jimbo quantum group of type D_{n} positive, denoted as $U_{q}^{+} \mathfrak{o}(2 n)$, is the associative F-algebra with 1 , with generators E_{1}, \ldots, E_{n} and with relations

$$
\begin{array}{ll}
E_{i} E_{j}-E_{j} E_{i}=0 & \text { if } i \text { is not linked to } j \text { in } G \\
E_{i} E_{j}^{2}-\left(q+q^{-1}\right) E_{j} E_{i} E_{j}+E_{j}^{2} E_{i}=0 & \text { if } i \text { is linked to } j \text { in } G
\end{array}
$$

Let us take some formal letters, $M_{i j}$ and $S_{i j}, 1 \leqslant i<j \leqslant n$ (called canonical basic elements of $\left.\mathfrak{o}^{+}(2 n)_{q}\right)$, ordered according to the following rules:
$M_{i(i+1)}>\cdots>M_{i n}>S_{i n}>S_{i(i+1)}>\cdots>S_{i(n-1)} \quad 1 \leqslant i \leqslant n-1$
$S_{j(n-1)}>M_{(j+1)(j+2)} \quad 1 \leqslant j \leqslant n-2$.
Let L_{n} be the F-module with free basis given by the canonical basis of $\mathfrak{o}^{+}(2 n)_{q}$. Now, we define $(1 \leqslant i<j \leqslant n, 1 \leqslant a<b \leqslant n)$

$$
\begin{array}{ll}
d_{i j, a b}=\delta_{i a}+\delta_{b j}+\delta_{j a}+\delta_{b i} & h_{i j, a b}=\delta_{a i}-\delta_{a j}-\delta_{b j}+\delta_{b i} \\
c_{i j, a b}=\delta_{i a}-\delta_{i b}-\delta_{j a}+\delta_{j b} & g_{i j, a b}=\delta_{a i}-\delta_{b i}+\delta_{j a}-\delta_{j b}
\end{array}
$$

where δ stands for the Kronecker delta.
The non-associative algebra $\mathfrak{o}^{+}(2 n)_{q}$ is a 5-tuple $\left(L_{n}, \sigma, B^{(1)}, B^{(2)}, B^{(3)}\right)$ where σ and $B^{(1)}, B^{(2)}, B^{(3)}$ are linear maps; $\sigma: L_{n} \otimes L_{n} \rightarrow L_{n} \otimes L_{n}, B^{(k)}: L_{n} \otimes L_{n} \rightarrow L_{n}^{\otimes k}, k=1,2,3$, defined by the conditions $\sigma^{2}=I d, B^{(k)} \sigma=-B^{(k)}$ and

$$
\begin{array}{lll}
\sigma\left(M_{i j} \otimes M_{a b}\right)=q^{c_{i j a b}} M_{a b} \otimes M_{i j} & \text { if } & M_{i j}>M_{a b} \\
\sigma\left(M_{i j} \otimes S_{a b}\right)=q^{h_{i j, a b}} S_{a b} \otimes M_{i j} & \text { if } & M_{i j}>S_{a b} \\
\sigma\left(S_{i j} \otimes S_{a b}\right)=q^{d_{i j, a b}} S_{a b} \otimes S_{i j} & \text { if } & S_{i j}>S_{a b}
\end{array}
$$

as well as
$B^{(1)}\left(M_{i j} \otimes M_{a b}\right)=\delta_{j a} M_{i b}-q \delta_{b i} M_{a j} \quad B^{(1)}\left(M_{i j} \otimes S_{a b}\right)=\delta_{j a} S_{i b}^{\prime}+\delta_{b j} S_{a i}^{\prime}$ $B^{(1)}\left(S_{i j} \otimes S_{a b}\right)=0$
where

$$
S_{i j}^{\prime}= \begin{cases}S_{i j} & \text { if } \quad i<j \\ -q S_{j i} & \text { if } \quad i>j \\ 0 & \text { if } \quad i=j\end{cases}
$$

and

$$
B^{(2)}\left(M_{i j} \otimes S_{a b}\right)= \begin{cases}\left(q-q^{-1}\right) q^{-1}\left(S_{i j} \otimes M_{a b}\right. & \text { if } \quad i<a \quad j=b \\ \left.-q S_{i n} \otimes M_{a n}\right) & \text { if } \quad i=a j=b<n \\ -q\left(q-q^{-1}\right) S_{i n} \otimes M_{i n} & \text { if } \quad i<a<j<b=n \\ \left(q-q^{-1}\right) S_{i n} \otimes M_{a j} & \text { if } \quad i<a<b<n \quad j=n \\ \left(q-q^{-1}\right) S_{i b} \otimes M_{a j} & \text { if } a<b<i<j=n \\ -\left(q-q^{-1}\right) S_{a i} \otimes M_{b n} & \text { otherwise }\end{cases}
$$

$$
B^{(2)}\left(S_{i j} \otimes S_{a b}\right)= \begin{cases}-\left(q-q^{-1}\right) S_{b n} \otimes S_{a i} & \text { if } \quad a<b<i<j=n \\ \left(q-q^{-1}\right) S_{a n} \otimes S_{i b} & \text { if } i<a<b<j=n \\ 0 & \text { otherwise }\end{cases}
$$

$B^{(2)}\left(M_{i j} \otimes M_{a b}\right)= \begin{cases}\left(q-q^{-1}\right) M_{a j} \otimes M_{i b} & \text { if } i<a<j<b \\ 0 & \text { otherwise }\end{cases}$
$B^{(3)}\left(M_{i j} \otimes S_{a b}\right)=\left\{\begin{array}{l}-q\left(q-q^{-1}\right) S_{i n} \otimes M_{b j} \otimes M_{i n} \\ 0\end{array}\right.$ if $\quad i=a<b<j$ otherwise
$B^{(3)}\left(S_{i j} \otimes S_{a b}\right)= \begin{cases}-q\left(q-q^{-1}\right) S_{i b} \otimes M_{j n} \otimes S_{j n} & \text { if } i<j=a<b<n \\ 0 & \text { otherwise } .\end{cases}$
Our main statement is that $\mathfrak{o}^{+}(2 n)_{q}$ is a generalized Lie algebra with generalized universal enveloping isomorphic to the positive part of the Drinfeld-Jimbo quantum group of type D_{n}.

Figure 1. The tensorial product $\lambda \alpha_{1} \otimes \alpha_{2} \otimes \cdots \otimes \alpha_{k}$.
Table 1. The map $B^{(1)}$. In this table and in the other tables the elements x, y are basic elements such that $x<y$.

In order to prove this we realized the elements of $\mathfrak{o}^{+}(2 n)_{q}$ in a quiver (oriented graph) (see [11]). Despite quivers having an associative algebra structure, we are interested only in the embedded linear structure. The associative structure plays a secondary role.

Let Γ_{n} be a quiver of type A_{n}. We take two copies of the k-category $k \Gamma_{n}: \mathcal{D}_{n}=k \Gamma_{n} \oplus k \Gamma_{n}$. In the second copy we draw the paths as dashed paths while in the first copy we draw full paths. A dashed path with origin i and terminus j will be labelled $S_{i j}$ and a full path with origin i and terminus j will be labelled $M_{i j}$. Furthermore, in order to avoid redundancy, instead of drawing two sets of vertices, one for each copy of $k \Gamma_{n}$, we are drawing just one set of vertices. So the full and dashed paths may have common vertices.

The maps $B^{(k)}, k=1,2,3$, appear in tables $1-3$, respectively in graphical mode, where a graph of the type of figure 1 , for $\lambda \in F$, means the tensorial product $\lambda \alpha_{1} \otimes \alpha_{2} \otimes \cdots \otimes \alpha_{k}$.

Theorem 1. The Drinfeld-Jimbo quantum group $U_{q}^{+} \mathfrak{o}(8)$ of type D_{4} positive is generated by the elements of $\mathfrak{o}^{+}(8)_{q}$, with the relations

$$
m(x \otimes y)-m \sigma(x \otimes y)=B^{(1)}(x \otimes y)+m B^{(2)}(x \otimes y)+m m_{1} B^{(3)}(x \otimes y)
$$

where $x, y \in \mathfrak{o}^{+}(8)_{q}$ and m is the multiplication map of $U_{q}^{+} \mathfrak{o}(8)$.
Proof. Almost all the commutators made of $M_{i j}, S_{i j}, 1 \leqslant i<j \leqslant 4$, can be obtained by means of lemmas 1 and 2. The exceptions are M_{13} with S_{23}, M_{13} with S_{12} and S_{12} with S_{23}.

Table 2. The map $B^{(2)}$.
(qQy

In fact, in tables 4 and 5 each row represents an isomorphism from $U_{q}^{+}\left(s l_{4}\right)$ to a subalgebra of $U_{q}^{+} \mathfrak{o}(8)$ sending each head of the table to a generator in $U_{q}^{+} \mathfrak{o}(8)$. For instance, from table 4 (second row) and lemma 1 we get

$$
M_{13} S_{24}-S_{24} M_{13}=\left(q-q^{-1}\right) M_{23} S_{14}
$$

There are some canonical basic elements behaving as the generators $\beta_{i j}$ in lemma 2 but with $1 / q$ instead of q. This behaviour is shown in table 6 .

In order to deal with the uncovered commutators we define an auxiliary map ρ : ρ coincides with σ, however, when the commutation on $x \otimes y$ has the form $x y-y x=\xi a b$ with $\xi \neq 0$ then the quadratic element $a \otimes b$ is included in ρ. For instance, $\rho\left(M_{13} \otimes M_{24}\right)=$ $M_{24} \otimes M_{13}+\left(q-q^{-1}\right) M_{23} \otimes M_{14}$. Then we can use equation (1) for ρ on $S_{23} \otimes M_{12} \otimes M_{23}$ in order to obtain

$$
S_{23} M_{13}-m \rho\left(S_{23} \otimes M_{13}\right)=-q S_{13} M_{23}+q m \rho\left(S_{13} \otimes M_{23}\right)
$$

Table 3. The map $B^{(3)}$.

Otherwise
0

Table 4. Relations of lemma 1 type.

α_{12}	α_{13}	α_{23}	α_{14}	α_{24}	α_{34}
M_{12}	M_{13}	M_{23}	M_{14}	M_{24}	M_{34}
M_{12}	M_{13}	M_{23}	S_{14}	S_{24}	S_{34}
M_{12}	M_{14}	M_{24}	$-q^{-1} S_{13}$	$-q^{-1} S_{23}$	S_{34}
M_{12}	S_{14}	S_{24}	$-q^{-1} S_{13}$	$-q^{-1} S_{23}$	M_{34}

Table 5. Relations of lemma 2 type

β_{12}	β_{13}	β_{23}	β_{14}	β_{24}	β_{34}
M_{34}	$-q M_{24}$	M_{23}	S_{23}	S_{24}	S_{34}
S_{34}	$-q S_{14}$	M_{13}	S_{13}	M_{14}	M_{34}
M_{24}	$-q M_{14}$	M_{12}	S_{12}	S_{14}	S_{24}

Table 6. Relations of dual lemma 2 type. The number q is replaced by $1 / q$ in lemma 2.

β_{12}	β_{13}	β_{23}	β_{14}	β_{24}	β_{34}
M_{23}	S_{24}	S_{34}	S_{12}	S_{13}	M_{14}
M_{23}	M_{24}	M_{34}	S_{12}	S_{13}	S_{14}

where m is the multiplication map of $U_{q}^{+} \mathfrak{o}(8)$. Since $\rho\left(S_{23} \otimes M_{13}\right)=q M_{13} \otimes S_{23}+q^{2}(q-$ $\left.q^{-1}\right) M_{14} \otimes S_{24}$ and $\rho\left(S_{13} \otimes M_{23}\right)=q^{-1} M_{23} \otimes S_{13}+\left(q-q^{-1}\right) M_{24} \otimes S_{14}$ then,
$S_{23} M_{13}-q M_{13} S_{23}=S_{12}-q^{2}\left(q-q^{-1}\right) M_{14} S_{24}-\left(q-q^{-1}\right) S_{13} M_{23}+q\left(q-q^{-1}\right) M_{24} S_{14}$.
In a similar way, using (1) on $S_{23} \otimes M_{24} \otimes S_{14}$ one can prove

$$
S_{23} S_{12}-q^{-1} S_{12} S_{23}=\left(q-q^{-1}\right)^{2} S_{13} M_{24} S_{24}
$$

and, using (1) on $M_{13} \otimes M_{23} \otimes S_{13}$,

$$
M_{13} S_{12}-q S_{12} M_{13}=-q\left(q-q^{-1}\right)^{2} S_{14} M_{23} M_{14}
$$

4. Canonical basic elements in $U_{q}^{+} \mathfrak{o}(2 n)$

We define inductively the following elements in $U_{q}^{+} \mathfrak{o}(2 n)$:

$$
\begin{aligned}
& M_{i(i+1)}=E_{i} \quad 1 \leqslant i \leqslant n-1 \\
& S_{(n-1) n}=E_{n} \\
& M_{i(i+k)}=M_{i(i+k-1)} M_{(i+k-1)(i+k)}-q^{-1} M_{(i+k-1)(i+k)} M_{i(i+k-1)} \quad 1<k<n \\
& S_{(n-1-k) n}=M_{(n-1-k)(n-1-k+1)} S_{(n-1-k+1) n}-q^{-1} S_{(n-1-k+1) n} M_{(n-1-k)(n-1-k+1)} \\
& \quad 1 \leqslant k \leqslant n-2 \\
& q^{-1} S_{i(i+1)}=M_{i n} S_{(i+1) n}-q^{-1} S_{(i+1) n} M_{i n} \quad 1 \leqslant i<n-1 \\
& S_{i(i+k)}=M_{i(i+k-1)} S_{(i+k-1)(i+k)}-q^{-1} S_{(i+k-1)(i+k)} M_{i(i+k-1)} \quad 1<k<n
\end{aligned}
$$

Lemma 3.

$$
M_{12} M_{1 b}-q M_{1 b} M_{12}=0 \quad 2<b \leqslant n
$$

Proof. This lemma is proved by mathematical induction on b. Let us put

$$
\left[M_{i j}, M_{u v}\right]=m(I d \otimes I d-\sigma)\left(M_{i j} \otimes M_{a b}\right)
$$

where m is the multiplication map of $U_{q}^{+} \mathfrak{o}(2 n)$. From the Jacobi identity (1) on $M_{12} \otimes$ $M_{1(b-1)} \otimes M_{(b-1) b}$, we get
$\left[M_{12},\left[M_{1(b-1)}, M_{(b-1) b}\right]\right]-\left[\left[M_{12}, M_{1(b-1)}\right], M_{(b-1) b}\right]=-q^{-1}\left[\left[M_{12}, M_{(b-1) b}\right], M_{1(b-1)}\right]$.

If $b=3$ then the right-hand side of (6) is $\left[M_{13}, M_{13}\right]=0$ and if $b>3$ then the right-hand side is zero because $\left[M_{12}, M_{(b-1) b}\right]=0$ by definition. It follows, by mathematical induction on b, that

$$
0=\left[M_{12},\left[M_{1(b-1)}, M_{(b-1) b}\right]\right]=\left[M_{12}, M_{1 b}\right] .
$$

Lemma 4.

$$
\begin{array}{lc}
M_{1 j} M_{1(j+1)}-q M_{1(j+1)} M_{1 j}=0 & 1<j \leqslant n \\
M_{1 j} M_{k(k+1)}-M_{k(k+1)} M_{1 k}=0 & j<k \leqslant n \\
M_{1 j} S_{(n-1) n}-S_{(n-1) n} M_{1 j}=0 . & \tag{9}
\end{array}
$$

Proof. This lemma is proved by mathematical induction on j.
Note that (7) is equivalent to

$$
M_{1 j} M_{j(j+1)}^{2}-\left(q+q^{-1}\right) M_{j(j+1)} M_{1 j} M_{j(j+1)}+M_{j(j+1)}^{2} M_{1 j}=0
$$

therefore, equations (7)-(9) are the defining relations of $U_{q}^{+}(\mathfrak{o}(n-j+2))$.
Theorem 2. Let

$$
\mathcal{B}=\left\{M_{i j} \mid 1 \leqslant i<j \leqslant n\right\} \cup\left\{S_{i j} \mid 1 \leqslant i<j \leqslant n\right\} .
$$

If $x, y \in \mathcal{B}$ then there exists a subalgebra A of $U_{q}^{+} \mathfrak{o}(2 n)$ such that
(i) $x, y \in A$ and $A \simeq U_{q}^{+} \mathfrak{o}$ (8) as algebras;
(ii) $m(x \otimes y)-m \sigma(x \otimes y)=B^{(1)}(x \otimes y)+m B^{(2)}(x \otimes y)+m m_{1} B^{(3)}(x \otimes y)$, where m is the multiplication map of the algebra $U_{q}^{+} \mathfrak{o}(2 n)$.

Proof.

(i) Assume $x=\gamma_{a b}$ and $y=\rho_{i j}$ with $\gamma=M$ or S and $\rho=M$ or S. If $1<a, b \leqslant n$ and $1<i, j \leqslant n$, then x, y are in B, the subalgebra generated by $M_{i(i+1)}, 1<i \leqslant n$, and $S_{(n-1) n}$, which is isomorphic to $U_{q}^{+}(\mathfrak{o}(n-1))$. Therefore, using mathematical induction, the theorem holds.
We can assume $a=1$. If $(i, j) \neq(1,2)$ and $b>2$, then x, y are in the subalgebra generated by $M_{1 b}, M_{b k}, b<k \leqslant n$, and $S_{(n-1) n}$, which is isomorphic to $U_{q}^{+}(\mathfrak{o}(n-b+2))$ because of lemma 4. If $(i, j)=(1,2)$ and $b>2$ then, since $M_{2 b}, M_{b n}, S_{b n}$ are in $B \simeq U_{q}^{+}(\mathfrak{o}(n-1))$, we can use mathematical induction and lemma 3 to get that $M_{12}, M_{2 b}, M_{b n}$ and $S_{b n}$ are generators of a subalgebra isomorphic to $U_{q}^{+} \mathfrak{o}(8)$, which contains x and y.
(ii) If $x, y \in \mathcal{B}$, then, due to (i), there exists A, a subalgebra isomorphic to $U_{q}^{+} \mathfrak{o}(8)$, such that $x, y \in A$. Because (ii) holds in A, it also holds in $U_{q}^{+} \mathfrak{o}(2 n)$.

5. Generalized Lie algebra structures

Let L be a k-module and $\sigma: L \otimes L \rightarrow L \otimes L$ a linear map. We define the symmetric algebra $\mathcal{S}(L)$ of L as the factor algebra of the tensor algebra L^{\otimes} by the two-sided ideal generated by

$$
x \otimes y-\sigma(x \otimes y) \quad x, y \in L
$$

Further, suppose that there are $s+1$ linear maps $B^{(k)}: L \otimes L \rightarrow L^{\otimes k} \otimes L^{\otimes}, k=0,1, \ldots, s$. Then define

$$
R: L^{\otimes} \otimes L^{\otimes} \rightarrow L^{\otimes} \otimes L^{\otimes}
$$

by

$$
R(u \otimes v)= \begin{cases}v \otimes u & \text { if } u=1 \quad \text { or } v=1 \\ \sigma(u \otimes v)+\sum_{k} B^{(k)}(u \otimes v) \otimes 1 & \text { if } u, v \in L \\ u \otimes v & \text { otherwise. }\end{cases}
$$

Let $j: L \rightarrow \mathcal{S}(L)$ be the natural embedding and $\hat{L}=L \oplus F$.

Definition 1.

(i) A σ-Lie algebra is an F-module L together with the F-linear maps $\sigma: L \otimes L \rightarrow$ $L \otimes L, B^{(k)}: L \otimes L \rightarrow L^{\otimes k}, 0 \leqslant k \leqslant s$ and $-\cdot-: \hat{L} \otimes \mathcal{S}(L) \rightarrow \mathcal{S}(L)$ such that
(a) $\sigma^{2}=I d$ and $x \cdot 1=j(x) \forall x \in L$;
(b) $B^{(k)} \sigma=-B^{(k)} k \geqslant 0$;
(c) $\left(R_{1} R_{2} R_{1}\right)(x \otimes y \otimes z) \cdot 1=\left(R_{2} R_{1} R_{2}\right)(x \otimes y \otimes z) \cdot 1, \forall x, y, z \in L$;
where $\left(x_{1} \otimes \cdots \otimes x_{a}\right) \cdot 1=x_{1} \cdot\left(\cdots\left(x_{a} \cdot 1\right) \cdots\right)$ and $1 \cdot z=z, \forall z \in \mathcal{S}(L)$.
(ii) The universal enveloping algebra $U(L)$ of a σ-Lie algebra L is the factor algebra of L^{\otimes}, the tensorial algebra of L, modulo the two-sided ideal generated by

$$
x \otimes y-\sigma(x \otimes y)-\sum_{k=0}^{s} B^{(k)}(x \otimes y)
$$

Example 1. If we put $B^{(k)}=0$ for $k \neq 1$ and σ stands for the usual flip $x \otimes y \mapsto y \otimes x$ then we get a classical Lie algebra with bracket $B^{(1)}$ since the so-called braid equation $R_{1} R_{2} R_{1}=R_{2} R_{1} R_{2}$ is equivalent, in this case, to the classical Jacobi identity. The map -. - : $L \otimes \mathcal{S}(L) \rightarrow \mathcal{S}(L)$ is the classical representation of the Lie algebra on the symmetric algebra related to the Poincaré-Birkhoff-Witt theorem [20].

It may seem that (i)(c) of definition 1 is an outer equation, however, it is an identity in L because it can be written as

$$
B^{(1)} B_{1}^{(1)}-B^{(1)} B_{2}^{(1)}+B^{(1)} B_{2}^{(1)} \sigma_{1}+B_{1}^{(0)}-B_{1}^{(0)} \sigma_{2}+B_{1}^{(0)} \sigma_{2} \sigma_{1}-B_{2}^{(0)}+B_{2}^{(0)} \sigma_{1}-B_{2}^{(0)} \sigma_{1} \sigma_{2}
$$

$$
\begin{align*}
= & j^{-1}\left(\sigma B_{2}^{(1)}-\sigma B_{1}^{(1)}-\sigma B_{2}^{(1)} \sigma_{1}+\sum_{k \neq 1} B^{(k)}\left(B_{2}^{(1)}-B_{2}^{(1)} \sigma_{1}-B_{1}^{(1)}\right)\right. \\
& \left.+\sum_{k \geqslant 1}\left(B_{2}^{(k)} \sigma_{1} \sigma_{2}+B_{1}^{(k)} \sigma_{2}-B_{1}^{(k)} \sigma_{2} \sigma_{1}\right)+\sum_{k \geqslant 2}\left(B_{2}^{(k)}-B_{1}^{(k)}\right)\right) \cdot 1 . \tag{10}
\end{align*}
$$

Of course, as Vybornov noted [21], the antisymmetry (i)(b) of definition 1 is equivalent to the invertibility of the map R. Note that our formulation of σ-Lie algebra is related to Vybonov's abstract definition of a quantum Lie algebra.

The map - - can be constructed in a canonical way for some graded spaces.
Definition 2. We call a strict grading of a σ-Lie algebra L a direct decomposition of the form

$$
L=\oplus_{i \in \mathbb{N}} L_{i}
$$

where each L_{i} is a subspace of L such that

$$
\begin{equation*}
B^{(k)}\left(L_{i} \otimes L_{j}\right) \subseteq \oplus_{u_{1}+\cdots+u_{k} \leqslant i+j-1} L_{u_{1}} \otimes \cdots \otimes L_{u_{k}} \quad \forall i, j \in \mathbb{N} \tag{11}
\end{equation*}
$$

As usual, if $x \in L_{i}, x$ is said to be homogeneous of degree i and we put $\eta(x)=i$.
Suppose that for each $i \in \mathbb{N}$ there is a basis \mathcal{B}_{i} consisting of homogeneous elements of degree i, and moreover that $\mathcal{B}=\cup_{i \in \mathbb{N}} \mathcal{B}_{i}$ is a totally ordered set.

If $\Sigma=\left(x_{1}, \ldots, x_{k}\right)$ is a finite non-decreasing sequence of basic elements of \mathcal{B}, we put $z_{\Sigma}=j\left(x_{1}\right) \cdots j\left(x_{k}\right) \in \mathcal{S}(L), \eta(\Sigma)=\eta\left(x_{1}\right)+\cdots+\eta\left(x_{n}\right)$ and $z_{\varnothing}=1 \in \mathcal{S}(L), \eta\left(z_{\varnothing}\right)=0$. Furthermore, $x \leqslant \Sigma=\left(x_{1}, \ldots, x_{k}\right)$, for $x \in \mathcal{B}$, means $x \leqslant x_{1}$.

Lemma 5. Let \mathcal{S}_{p} be the submodule of $\mathcal{S}(L)$ generated by z_{Σ} such that $\eta(\Sigma) \leqslant p$.
If $\sigma(x \otimes y)=q_{x y} y \otimes x, \forall x, y \in \mathcal{B}$, then there exists a k-morphism $~_{-} \cdot: L \otimes \mathcal{S}(L) \rightarrow$ $\mathcal{S}(L)$ such that, for any $x_{\lambda} \in \mathcal{B}$,
(i) $x_{\lambda} \cdot z_{\Sigma}=j\left(x_{\lambda}\right) z_{\Sigma} \quad$ if $\quad x_{\lambda} \leqslant \Sigma$;
(ii) $x_{\lambda} \cdot z_{\Sigma}-j\left(x_{\lambda}\right) z_{\Sigma} \in \mathcal{S}_{\eta\left(x_{\lambda}\right)+\eta(\Sigma)-1}$.

Proof. A subset of $\left\{z_{\Sigma} \mid \Sigma\right.$ is a non-decreasing sequence of basic elements of $\left.L\right\}$ is a basis of $\mathcal{S}(L)$. So, we are going to define $\cdot-$ on such a subset. We proceed with mathematical induction on $\eta\left(x_{\lambda}\right)+\eta(\Sigma)$. If $\eta\left(x_{\lambda}\right)+\eta(\Sigma)=1$ then $\Sigma=\emptyset$. Then define $x_{\lambda} \cdot z_{\emptyset}=j\left(x_{\lambda}\right)$. Now assume that $x_{\lambda^{\prime}} \cdot z_{\Sigma^{\prime}}$ is defined for $\eta\left(x_{\lambda^{\prime}}\right)+\eta\left(\Sigma^{\prime}\right)<\eta\left(x_{\lambda}\right)+\eta(\Sigma)$, satisfying (i) and (ii). We have to define $x_{\lambda} \cdot z_{\Sigma}$. There are two cases: $x_{\lambda} \leqslant \Sigma$ or $x_{\lambda} \notin \Sigma$.

Case $\lambda \leqslant \Sigma$: define $x_{\lambda} \cdot \Sigma=j\left(x_{\lambda}\right) z_{\Sigma}$.
Case $\lambda \nless \Sigma$: we may write $\Sigma=\left(x_{\mu}, N\right)$ where $x_{\mu} \leqslant N$ and $x_{\lambda}>x_{\mu}$ and

$$
B^{(k)}\left(x_{\lambda} \otimes x_{\mu}\right)=\sum_{i} \xi_{i} x_{i_{1}} \otimes \cdots \otimes x_{i_{k}}
$$

where each $x_{i_{j}} \in \mathcal{B}$ and $\xi_{i} \in F$. Because of the induction hypothesis and (11) we can put $w=x_{\lambda} \cdot z_{N}-z_{\lambda} z_{N} \in \mathcal{S}_{\eta\left(x_{\lambda}\right)+\eta(N)-1}$. Then $x_{\mu} \cdot w$ is already defined and we can also define

$$
B^{(k)}\left(x_{\lambda} \otimes x_{\mu}\right) \cdot z_{N}=\sum_{i} \xi_{i} x_{i_{1}} \cdot\left(\cdots\left(x_{i_{k}} \cdot z_{N}\right) \cdots\right)
$$

Therefore we can define

$$
\begin{equation*}
x_{\lambda} \cdot z_{\Sigma}=j\left(x_{\lambda}\right) j\left(x_{\mu}\right) z_{N}+q_{\lambda \mu} x_{\mu} \cdot w+\sum_{k} B^{(k)}\left(x_{\lambda} \otimes x_{\mu}\right) \cdot z_{N} \tag{12}
\end{equation*}
$$

satisfying (ii).
Example 2. Let V be an F-vectorial space and $f: V \otimes V \rightarrow k$ a symmetric bilinear form. Now we define $B^{(0)}=2 f, \sigma: V \otimes V \rightarrow V \otimes V, x \otimes y \mapsto-y \otimes x$, and a trivial decomposition $V=\oplus_{i} V_{i}, V_{1}=V, V_{i}=0$ if $i>0$. We get $R_{1} R_{2} R_{1}=R_{2} R_{1} R_{2}$. Then, the universal enveloping algebra of the σ-Lie algebra $\left(V, \sigma, B^{(0)}\right)$ is the classical Clifford algebra $C l(V)$ of V. Just as in the case of Lie algebras, the linear map - - is the classical representation on the symmetric algebra related to the Poincaré-Birkhoff-Witt theorem for Clifford algebras.

Example 3. The space $\mathfrak{o}^{+}(8)_{q}$ has a structure of σ-Lie algebra; the equation of (i)(c) of the definition is obtained by straightforward calculations (using Mathematica [22]). The decomposition (11) is induced by defining the canonical basic elements of $\mathfrak{o}^{+}(8)_{q}$ as homogeneous with the following degrees: $\eta\left(M_{12}\right)=3, \eta\left(M_{13}\right)=3, \eta\left(M_{14}\right)=1, \eta\left(S_{14}\right)=$ $1, \eta\left(S_{12}\right)=1, \eta\left(S_{13}\right)=1, \eta\left(M_{23}\right)=1, \eta\left(M_{24}\right)=1, \eta\left(S_{24}\right)=1, \eta\left(S_{23}\right)=3, \eta\left(M_{34}\right)=$ 3, $\eta\left(S_{34}\right)=3$. From theorem 1 we get $U\left(\mathfrak{o}^{+}(8)_{q}\right) \simeq U_{q}^{+} \mathfrak{o}(8)$ as associative algebras.

Proposition 2. Let L be a σ-Lie algebra with strict grading $L=\oplus_{i \in \mathbb{N}} L_{i}$, let \mathcal{B}_{i} be a basis of $L_{i}, \forall i \in \mathbb{N}$, and $\mathcal{B}=\cup_{i \in \mathbb{N}} \mathcal{B}_{i}$. There exists a linear map - $-: L \otimes \mathcal{S}(L) \rightarrow \mathcal{S}(L)$ such that
$x_{\lambda} \cdot\left(x_{\mu} \cdot z_{N}\right)-\sigma\left(x_{\lambda} \otimes x_{\mu}\right) \cdot z_{N}=\sum_{k=0}^{s} B^{(k)}\left(x_{\lambda} \otimes x_{\mu}\right) \cdot z_{N} \quad \forall x_{\lambda}, x_{\mu} \in \mathcal{B}$.
Proof. Natural modifications to the proof of lemma 1 in [20] can be done for the σ-Lie algebra case (modifications of this kind were done in lemma V. 2 of [23] for some generalized Lie algebras called T-Lie algebras). Let $\quad \cdot$ - be the map defined in lemma 5. There are two cases:
(i) $x_{\mu} \leqslant N$ or $x_{\lambda} \leqslant N$;
(ii) $x_{\mu} \notin N$ and $x_{\lambda} \nless N$.
(i) Since antisymmetry holds we can assume $x_{\mu} \leqslant N$ and $x_{\mu}<x_{\lambda}$. Let $M=\left(x_{\mu}, N\right)$; then by definition (12),

$$
\begin{aligned}
q_{\lambda \mu} x_{\mu} \cdot\left(x_{\lambda} \cdot\right. & \left.z_{N}\right)+\sum_{k} B^{(k)}\left(x_{\lambda} \otimes x_{\mu}\right) \cdot z_{N} \\
& =q_{\lambda \mu} x_{\mu} \cdot\left(j\left(x_{\lambda}\right) z_{N}\right)+q_{\lambda \mu} x_{\mu} \cdot\left(x_{\lambda} \cdot z_{N}-j\left(x_{\lambda}\right) z_{N}\right)+\sum_{k} B^{(k)}\left(x_{\lambda} \otimes x_{\mu}\right) \cdot z_{N} \\
& =x_{\lambda} \cdot z_{M}=x_{\lambda} \cdot\left(x_{\mu} \cdot z_{N}\right)
\end{aligned}
$$

(ii) Let $N=\left(x_{\gamma}, Q\right)$ where $x_{\gamma} \leqslant Q, x_{\gamma}<x_{\lambda}$ and $x_{\gamma}<x_{\mu}$. Suppose that (13) holds for any $\eta\left(x_{\lambda}^{\prime}\right)+\eta\left(x_{\mu}^{\prime}\right)+\eta\left(N^{\prime}\right) \leqslant r$. For $\eta\left(x_{\lambda}\right)+\eta\left(x_{\mu}\right)+\eta(N) \leqslant r+1$ we have $x_{\mu} \cdot z_{Q}=$ $j\left(x_{\mu}\right) z_{Q}+w$, where $w \in \mathcal{S}_{\eta\left(x_{\mu}\right)+\eta(Q)-1}$. Then,

$$
\begin{aligned}
x_{\lambda} \cdot\left(x_{\mu} \cdot z_{N}\right)= & x_{\lambda} \cdot q_{\mu \gamma}\left(x_{\gamma} \otimes x_{\mu}\right) \cdot z_{Q}+x_{\lambda} \cdot \sum_{k} B^{(k)}\left(x_{\mu} \otimes x_{\gamma}\right) \cdot z_{Q} \\
= & q_{\mu \gamma} q_{\lambda \gamma} x_{\gamma} \cdot\left(x_{\lambda} \cdot\left(x_{\mu} \cdot z_{Q}\right)\right)+q_{\mu \gamma} \sum_{k} B^{(k)}\left(x_{\lambda} \otimes x_{\gamma}\right) \cdot\left(x_{\mu} \cdot z_{Q}\right) \\
& +x_{\lambda} \cdot \sum_{k} B^{(k)}\left(x_{\mu} \otimes x_{\gamma}\right) \cdot z_{Q}
\end{aligned}
$$

since, by calculation of the degree, (13) can be applied to $x_{\lambda} \cdot\left(x_{\gamma} \cdot j\left(x_{\mu}\right) z_{Q}\right)+x_{\lambda} \cdot\left(x_{\gamma} \cdot w\right)=$ $x_{\lambda} \cdot\left(x_{\gamma} \cdot\left(x_{\mu} \cdot z_{Q}\right)\right)$. Using that x_{λ}, x_{μ} are interchangeable and $\eta\left(x_{\lambda}\right)+\eta\left(x_{\mu}\right)+\eta\left(z_{Q}\right) \leqslant r$ it follows:

$$
\begin{aligned}
x_{\lambda} \cdot\left(x_{\mu} \cdot z_{N}\right)- & q_{\lambda \mu} x_{\mu} \cdot\left(x_{\lambda} \cdot z_{N}\right)=\sum_{k} B^{(k)}\left(x_{\lambda} \otimes x_{\mu}\right) \cdot z_{N}+\sum_{k}\left(\left(B_{2}^{(k)} \sigma_{1} \sigma_{2}-B_{1}^{(k)}\right)\right. \\
& \left.+B_{1}^{(k)} \sigma_{2}-B_{2}^{(k)} \sigma_{1}+\left(B_{2}^{(k)}-B_{1}^{(k)} \sigma_{2} \sigma_{1}\right)\right)\left(x_{\lambda} \otimes x_{\mu} \otimes x_{\gamma}\right) \cdot z_{Q} \\
= & \sum_{k} B^{(k)}\left(x_{\lambda} \otimes x_{\mu}\right) \cdot z_{N}+\left(\left(R_{2} R_{1} R_{2}-R_{1} R_{2} R_{1}\right)\left(x_{\lambda} \otimes x_{\mu} \otimes x_{\gamma}\right)\right) \cdot z_{Q}
\end{aligned}
$$

Now, we can put equation (10) on $x_{\lambda} \otimes x_{\mu} \otimes x_{\gamma}$ as $A \cdot 1=B \cdot 1$ where $A \in L$ and $B \in L^{\otimes}$; then using the induction hypothesis, (10) means that $A \equiv B\left(\bmod J_{s}\right)$, where J_{s} is the two-sided ideal of the tensor algebra L^{\otimes} generated by $x \otimes y-\sigma(x \otimes y)-\sum_{k} B^{(k)}(x \otimes y)$, such that $\eta(x)+\eta(y)<s=\eta\left(x_{\lambda}\right)+\eta\left(x_{\mu}\right)+\eta\left(x_{\gamma}\right)$.

Straightforward calculations show that
$\left(\left(R_{2} R_{1} R_{2}-R_{1} R_{2} R_{1}\right)\left(x_{\lambda} \otimes x_{\mu} \otimes x_{\gamma}\right)\right) \cdot z_{Q}=A \cdot z_{Q}-B \cdot z_{Q}=A \cdot z_{Q}-A \cdot z_{Q}$
since $B \equiv A\left(\bmod J_{s}\right)$ and using the induction hypothesis again.
Therefore

$$
x_{\lambda} \cdot\left(x_{\mu} \cdot z_{N}\right)-q_{\lambda \mu} x_{\mu} \cdot\left(x_{\lambda} \cdot z_{N}\right)=\sum_{k} B^{(k)}\left(x_{\lambda} \otimes x_{\mu}\right) \cdot z_{N}
$$

Paralleling the classical Lie algebra theory, one can prove
Theorem 3. Let L be a σ-Lie algebra with strict grading $L=\oplus_{i \in \mathbb{N}} L_{i}$. Then

$$
U(L) \simeq \mathcal{S}(L)
$$

as F-modules.

6. Morphisms and integer programming problems

Definition 3. If $\left(L_{i}, \sigma_{i}, B_{i}^{(k)}\right)$ is a σ-Lie algebra, $i=1,2$, then a linear morphism $\varphi: L_{1} \rightarrow L_{2}$ is called a σ-Lie algebra morphism if the following diagrams commute:

where $\varphi^{\otimes k}: L_{1}^{\otimes} \rightarrow L_{2}^{\otimes}, \varphi^{\otimes k}=\varphi \otimes \cdots \otimes \varphi$ (k factors).
Fix $1 \leqslant k<n-1$. Let $\mathfrak{o}^{+}(2 n, k)_{q}$ be the subalgebra of $\mathfrak{o}^{+}(2 n)_{q}$ obtained by dropping the basic elements $M_{i k}, M_{k j}$ and $S_{i k}, S_{k j}$ for $1 \leqslant i<k<j \leqslant n$.

Proposition 3. There exists an isomorphism $\varphi: \mathfrak{o}^{+}(2 n, k)_{q} \rightarrow \mathfrak{o}^{+}(2(n-1))_{q}$ of σ-Lie algebras such that
(i) $\varphi\left(M_{(k-1)(k+1)}\right)=M_{(k-1) k}$ and $\varphi\left(S_{(k-1)(k+1)}\right)=S_{(k-1) k}$;
(ii) φ is order preserving.

Proof. Let $f:\{1, \ldots, \hat{k}, \ldots, n\} \rightarrow\{1, \ldots, n-1\}$, defined by

$$
f(j)=\left\{\begin{array}{lll}
j & \text { if } \quad j<k \\
j-1 & \text { if } \quad j>k
\end{array}\right.
$$

then we define $\varphi: \mathfrak{o}^{+}(2 n, k)_{q} \rightarrow \mathfrak{o}^{+}(2(n-1))_{q}, \varphi\left(M_{i j}\right)=M_{f(i) f(j)}, \varphi\left(S_{i j}\right)=S_{f(i) f(j)}$.
Suppose that $k<i$ in (4). Then,

$$
\begin{aligned}
\varphi\left(M_{i(i+1)}\right) & =M_{(i-1) i}>\cdots>\varphi\left(M_{i n}\right)=M_{(i-1)(n-1)}>\varphi\left(S_{i n}\right)=S_{(i-1)(n-1)}>\varphi\left(S_{i(i+1)}\right) \\
& =S_{(i-1) i}>\cdots>\varphi\left(S_{i(n-1)}\right)=S_{(i-1)(n-2)}
\end{aligned}
$$

which is the order definition (4) in $\mathfrak{o}^{+}(2(n-1))_{q}$. In a similar way, if $k>i$,

$$
\cdots>M_{i(k-1)}>M_{i k}>M_{i(k+1)}>\cdots M_{i n}>S_{i n}>\cdots>S_{i(k-1)}>S_{i k}>S_{i(k+1)}>\cdots
$$

then,

$$
\begin{aligned}
\cdots>\varphi\left(M_{i(k-1)}\right) & =M_{i(k-1)}>\varphi\left(M_{i(k+1)}\right)=M_{i k}>\cdots>\varphi\left(M_{i n}\right)=M_{i(n-1)}>\varphi\left(S_{i n}\right) \\
& =S_{i(n-1)}>\cdots>\varphi\left(S_{i(k-1)}\right)=S_{i(k-1)}>\varphi\left(S_{i(k+1)}\right)=S_{i k}>\cdots .
\end{aligned}
$$

Again, this is the order (4) in $\mathfrak{o}^{+}(2(n-1))_{q}$.
Now, suppose $k<j$ in (5). Then,

$$
\varphi\left(S_{j(n-1)}\right)=S_{(j-1)(n-2)}>\varphi\left(M_{(j+1)(j+2)}\right)=M_{j(j+1)}
$$

and, if $k>j$,

$$
\varphi\left(S_{j(n-1)}\right)=S_{j(n-2)}>\varphi\left(M_{(j+1)(j+2)}\right)=M_{(j+1)(j+2)}
$$

(since $j+1 \neq k \neq j+2)$ which are the order definition (5) in $\mathfrak{o}^{+}(2(n-1))_{q}$.
Therefore φ is order preserving.
Let us take $\beta_{i j}, \gamma_{a b}$ canonical basic elements ($\beta=M$ or S and $\gamma=M$ or S). From tables 1 and 2 we learn that the coefficient of $B^{(k)}\left(\beta_{i j} \otimes \gamma_{a b}\right)$ does not depend on $i j, a b(k=1,2,3)$. Further, if we drop a vertex distinct from i, j, a and b, the paths do not change the graph shape. Therefore

$$
\begin{aligned}
& B^{(1)}(\varphi \otimes \varphi)\left(\beta_{i j} \otimes \gamma_{a b}\right)=\varphi B^{(1)}\left(\beta_{i j} \otimes \gamma_{a b}\right) \\
& B^{(2)}(\varphi \otimes \varphi)\left(\beta_{i j} \otimes \gamma_{a b}\right)=(\varphi \otimes \varphi) B^{(2)}\left(\beta_{i j} \otimes \gamma_{a b}\right) \\
& B^{(3)}(\varphi \otimes \varphi)\left(\beta_{i j} \otimes \gamma_{a b}\right)=(\varphi \otimes \varphi \otimes \varphi) B^{(3)}\left(\beta_{i j} \otimes \gamma_{a b}\right)
\end{aligned}
$$

In order to define a σ-Lie algebra structure over the elements $E_{i j}, S_{i j}, 1 \leqslant i<j \leqslant n$, first we have to define a strict grading. It suffices to define some degrees on them, satisfying the linear inequalities given by tables $1-3$: in each row of any table, the sum of the degrees of the elements in the first column has to be greater than the sum of the degrees of the second column. For instance, from 3, first row,

$$
\eta\left(M_{i j}\right)+\eta\left(S_{i b}\right)>\eta\left(M_{i n}\right)+\eta\left(M_{j b}\right)+\eta\left(S_{i n}\right) \quad \text { if } \quad j<b<n
$$

Finding a solution to such a system is known as an integer programming problem (with the aim function given by the trivial zero function); if a solution does exist then the inequality system is called feasible. Note that if $\eta\left(M_{i j}\right), \eta\left(S_{i j}\right), 1 \leqslant i<j \leqslant n$, is a solution for the case n, then constraint to $2 \leqslant i<j \leqslant n$ gives a solution for the case $n-1$. For example, since solutions for $n=6$ can be found using computer packages, the map - - from lemma 5 can be defined also for $n=4$ and 5 and the Jacobi identity (i)(c) can be proved by straightforward calculations.

Proposition 4. If $n=4,5$ and 6 then $\mathfrak{o}^{+}(2 n)_{q}$ has a structure of σ-Lie algebra.
Although the following lemma is trivial, it is useful in order to prove the generalized Jacobi identity on $\mathfrak{o}^{+}(2 n)_{q}$, when the system is feasible.

Lemma 6. If $\gamma_{i j}, \gamma_{a b}, \gamma_{u v}$ are paths of \mathcal{D}_{n}, then there exists a subalgebra B of \mathcal{D}_{n} such that
(i) $\gamma_{i j}, \gamma_{a b}, \gamma_{u v} \in B$;
(ii) $B \stackrel{\phi}{\simeq} \mathcal{D}_{6}$;
(iii) $\phi\left(\gamma_{i j}\right), \phi\left(\gamma_{a b}\right), \phi\left(\gamma_{u v}\right)$ are paths in \mathcal{D}_{6}.

Proposition 5. Let $n \geqslant 4$. If the inequality system described above is feasible, then $\mathfrak{o}^{+}(2 n)_{q}$ has a strict grading and there exists a linear map - - : $L \otimes \mathcal{S}\left(\mathfrak{o}^{+}(2 n)_{q}\right) \rightarrow \mathcal{S}\left(\mathfrak{o}^{+}(2 n)_{q}\right)$, such that the Jacobi identity $(i)(c)$ of definition 1 holds.

Proof. The solution to the integer programming problem ensures the existence of the map _ . .. For $n=4,5$ and 6 the generalized Jacobi identity (i)(c) of definition 1 can be proved by straightforward calculations. For $n>6$ we can take x, y, z canonical basic elements of $\mathfrak{o}^{+}(2 n)_{q}$. Then, from lemma 6 and proposition 3, there exists a space L_{0} which is a σ-Lie algebra such that
(i) $x, y, z \in L_{0}$;
(ii) $L_{0} \stackrel{\varphi}{\simeq} \mathfrak{o}^{+}(12)_{q}$ as σ-Lie algebras.

From the generalized Jacobi identity on $\mathfrak{o}^{+}(12)_{q}$, it follows the Jacobi identity on x, y, z.

If we put $q=1$ then $B^{(2)}=0$ and $B^{(3)}=0$ while $B^{(1)}$ is the classical bracket of $\mathfrak{o}^{+}(2 n)$ where $\left.M_{i j}\right|_{q=1}=e_{(i+n)(j+n)}-e_{j i}$ and $\left.S_{i j}\right|_{q=1}=e_{(i+n) j}-e_{(j+n) i}\left(e_{u v}, 1 \leqslant u, v \leqslant 2 n\right.$, the canonical basis of $g l_{2 n}$).

Theorem 4.

(i) $U\left(\mathfrak{o}^{+}(2 n)_{q}\right) \simeq U_{q}^{+} \mathfrak{o}(2 n)$ as associative algebras;
(ii) $\operatorname{dim}_{F} \mathfrak{0}^{+}(2 n)_{q}=n^{2}-n$;
(iii) if $q \rightarrow 1$ then $\mathfrak{0}^{+}(2 n)_{q} \rightarrow \mathfrak{o}^{+}(2 n)$.
(iv) If the inequality system described above is feasible, then
(a) a structure of σ-Lie algebra can be defined on $\mathfrak{o}^{+}(2 n)_{q}$;
(b) the universal enveloping algebra $U_{q}^{+} \mathfrak{o}(2 n)$ has a linear basis formed by the monomials made of finite non-decreasing sequences of canonical basic elements of $\mathfrak{o}^{+}(2 n)_{q}$.

7. About other quantum Lie algebras

The quantum Lie algebras of [16] are finite-dimensional spaces with a binary operation (called quantum Lie bracket) which are invariant under the adjoint representation of the Hopf algebra structure (ad-invariance) and also have a q-antisymmetry property. Of course, q antisymmetry is a generalization of the classical antisymmetry property, while one could say that the generalized Jacobi identity is the property of the quantum Lie bracket of being a module morphism on the quantum group. Actually, such a property is used to obtain a grading of the quantum Lie algebras by quantum roots, just as the classical Jacobi identity is used to obtain a grading of the Lie algebras by its roots. However, a polynomial style quantum Jacobi identity is expected.

Our Jacobi identity (definition 1 (i)(c)) is of this type. Therefore, a natural question is if Delius et al's quantum Lie algebra satisfies it. The answer is negative, at least in a direct way. Because our definition of the Jacobi identity uses a generalization of the classical flip $\rho: x \otimes y \mapsto y \otimes x$ and, besides a binary operation, additional higher degree operators: $B^{(k)}: L^{2 \otimes} \rightarrow L^{k \otimes}, k=2,3$. The flip used in [16] is the classical one, since the quantum groups used there are Hopf algebras which are not braided. For instance, the adjoint representation is defined by

$$
\begin{equation*}
a d(x)(y)=\rho_{2} S_{2}(\Delta \otimes I d)(x \otimes y) \tag{14}
\end{equation*}
$$

where Δ is the coproduct and S is the antipode. Besides there are no q-commutators of higher order; this is a remarkable fact in the theory of [16], but from our point of view this leads us to a classical Jacobi identity which does not hold in the quantum Lie algebras of [16].

Reciprocally, our quantum Lie algebras do not satisfy ad-invariance. For example, the vectorial subspace $\left(s l_{n+1}^{+}\right)_{q}$ generated by $M_{i j} 1 \leqslant i<j \leqslant n+1$, is a σ-Lie algebra of type A_{n} positive. This means that $U\left(\left(s l_{n+1}^{+}\right)_{q}\right)$ is an associative algebra isomorphic to $U_{q}^{+}\left(s l_{n+1}\right)$ which is the positive part of the Drinfeld-Jimbo quantum group of type A_{n} positive. In fact $U_{q}^{+}\left(s l_{n+1}\right)$ is a braided Hopf algebra [24], with a non-involutive braid given by

$$
\sigma\left(M_{i j} \otimes M_{a b}\right)=q^{c_{i, a b}} M_{a b} \otimes M_{i j}
$$

where $c_{i j, a b}=\delta_{i a}-\delta_{i b}-\delta_{j a}+\delta_{j b}$ (see [18]). We can calculate the braided version of (14) on $M_{13} \otimes M_{24}$, with σ instead of ρ and Δ the braided coproduct of $U_{q}^{+}\left(s l_{n+1}\right)$, in order to obtain that

$$
\phi\left(M_{i j}\right)=M_{i j} \otimes 1+1 \otimes M_{i j}+\left(I d-\sigma^{2}\right) \sum_{i<k<j} M_{i k} \otimes M_{k j}
$$

then $\operatorname{ad}\left(M_{13}\right)\left(M_{24}\right) \notin\left(s l_{n+1}^{+}\right)_{q}$.
Also, there is not a direct link to the quantum Lie algebras of [10]. It can be proved that $U_{q}^{+} \mathfrak{o}(2 n)$ is a braided Hopf algebra with braid given by the non-involutive operator τ,

$$
\tau\left(E_{i} \otimes E_{j}\right)=q^{a_{i j}} E_{j} \otimes E_{i}
$$

coproduct ϕ such that each generator E_{i} is a primitive element, where $C=\left(a_{i j}\right)$ is the Cartan matrix of type D_{n}. The map τ can be extended to $U_{q}^{+} \mathfrak{o}(2 n)$ by means of the following equations:

$$
\tau \rho=\tau \quad \tau m_{1}=m_{2} \tau_{1} \tau_{2} \quad \tau m_{2}=m_{1} \tau_{2} \tau_{1}
$$

where m is the multiplication map of $U_{q}^{+} \mathfrak{o}(2 n)$, because C is a symmetric matrix. Note that according to the deformation theory [25], in order to get a deformation of a Hopf algebra it suffices to deform the product and the coproduct.

Therefore $\phi\left(\left(s l_{n+1}^{+}\right)_{q}\right) \subset\left(s l_{n+1}^{+}\right)_{q} \otimes\left(s l_{n+1}^{+}\right)_{q}$. However, $\phi\left(\mathfrak{o}^{+}(2 n)_{q}\right) \not \subset \mathfrak{o}^{+}(2 n)_{q} \otimes \mathfrak{o}^{+}(2 n)_{q}$ because, for instance, $\phi\left(S_{23}\right) \notin \mathfrak{o}^{+}(2 n)_{q} \otimes \mathfrak{o}^{+}(2 n)_{q}$. We conclude that $\mathfrak{o}^{+}(2 n)_{q}$ is not a braided Lie algebra.

Acknowledgments

The first author (CB) would like to thank V K Kharchenko and M Durdevich for helpful discussions. Both authors thank C Ramírez for his helpful comments and remarks.

References

[1] Lyubashenko V and Sudbery A 1998 Generalized Lie algebras of type A_{n} J. Math. Phys. 39 3487-504
[2] Drinfeld V G 1986 Quantum groups Proc. Int. Congress of Mathematicians (Berkeley, CA) vol 1 (New York: Academic) pp 798-820
[3] Jimbo M 1985 A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation Lett. Math. Phys. 10 63-5
[4] Delius G W and Hüffmann A 1996 On quantum Lie algebras and quantum roots systems J. Phys. A: Math. Gen. 29 1703-22
[5] Delius G W, Hüffmann A, Gould M D and Zhang Y Z 1996 Quantum Lie algebras associated to $U_{q}\left(g l_{n}\right)$ and $U_{q}\left(s l_{n}\right)$ J. Phys. A: Math. Gen. 29 5611-8
[6] Sudbery A $1996 S U_{q}(n)$ gauge theory Phys. Lett. B $37575-80$
[7] Gomez C and Sierra G 1990 Quantum group meaning of the Coulomb gas Phys. Lett. B 240149
[8] Ramírez C, Ruegg H and Ruiz-Altaba M 1991 The contour picture of quantum groups: conformal field theories Nucl. Phys. B 364 195-233
[9] Durdevich M, Makaruk H E and Owczarek R 2001 Generalized noiseless quantum codes utilizing quantum enveloping algebras J. Phys. A: Math. Gen 34 1423-37
[10] Majid S 1994 Quantum and braided Lie algebras J. Geom. Phys. 13 307-56
[11] Gabriel P and Roiter A V 1997 Representations of Finite-Dimensional Algebras (Berlin: Springer) p 17
[12] Cibils C 1993 A quiver quantum group Commun. Math. Phys. 157 459-77
[13] Cibils C and Rosso M 2000 Hopf quivers Preprint math.QA/0009106. Lecture video at MSRI (1999) (www.msri.org)
[14] Ringel C M 1996 PBW-basis of quantum groups J. Reine Angew. Math. 470 51-88
[15] Kharchenko V K 2002 A combinatorial approach to quantification of Lie algebras Pac. J. Math. 203 191-233
[16] Delius G W, Gardner C and Gould M D 1998 The structure of quantum Lie algebras for the classical series B_{l}, C_{l} and D_{l} J. Phys. A: Math. Gen 31 1995-2020
[17] Woronowicz S L 1989 Differential calculus on compact matrix pseudogroups (quantum groups) Commun. Math. Phys. 122 125-70
[18] Bautista C 2001 Braided identities, quantum groups and Clifford algebras Int. J. Theor. Phys. 40 55-65
[19] Lusztig G 1988 Quantum deformations of certain simple modules over enveloping algebras Adv. Math. 70 237-49
[20] Bourbaki N 1989 Lie Groups and Lie Algebras (London: Springer) ch 1-3 p 19
[21] Vybornov M 1999 Solutions of the Yang-Baxter equation and quantum sl(2) J. Knot Theory Ramifications $\mathbf{8}$ 953-61
[22] Wolfram S 1993 Mathematica. A System for Doing Mathematics by Computer 2nd edn (Reading, MA: AddisonWesley)
[23] Bautista C 1998 A Poincaré-Birkhoff-Witt theorem for generalized Lie color algebras J. Math. Phys. 39 3828-43
[24] Majid S 1995 Foundations of Quantum Group Theory (Cambridge: Cambridge University Press)
[25] Gerstenhaber M and Schack S D 1992 Algebras, bialgebras, quantum groups and algebraic deformations Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Contemporary Mathematics 134) ed M Gerstenhaber and J Stasheff (Providence, RI: American Mathematical Society) pp 51-92

