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Abstract
A quantum Lie algebra is constructed within the positive part of the Drinfeld–
Jimbo quantum group of type Dn. Our quantum Lie algebra structure includes
a generalized antisymmetry property and a generalized Jacobi identity closely
related to the braid equation. A generalized universal enveloping algebra of our
quantum Lie algebra of type Dn positive is proved to be the Drinfeld–Jimbo
quantum group of the same type. The existence of such a generalized Lie
algebra is reduced to an integer programming problem. Moreover, when the
integer programming problem is feasible we show, by means of the generalized
Jacobi identity, that the Poincaré–Birkhoff–Witt theorem (basis) is still true.

PACS numbers: 02.20.Uw, 02.10.Sv, 02.10.Pn

1. Introduction

In [1] Lyubashenko and Sudbery called for generalizations of Lie algebras. The main problem
is to find a finite-dimensional vector space within the Drinfeld–Jimbo quantum groups [2, 3]
with a binary operation satisfying generalized antisymmetry and generalized Jacobi identity
in such a way that its universal enveloping algebra coincides with the quantum group; such
structures will be called quantum Lie algebras. Some additional constraints are required, for
instance, the existence of a Poincaré–Birkhoff–Witt basis or the adjoint map constructed by
commutators and by the Hopf algebra structure.

Delius et al [4, 5] suggested using quantum Lie algebras for the understanding of some
properties (quantum mass or charge ratios and exact S-matrices for elementary particles)
of quantum integrable models, since integrable models can be studied after classical Lie
algebras. Similarly, a q-deformed gauge theory is proposed by Sudbery [6], based on quantum
Lie algebras of type An; extension to other classes of quantum Lie algebras (like the one
proposed here) remains to be investigated.
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Conformal field theories in two dimensions, which give the low energy limit of
string theory, have been found to have quantum group symmetries related to monodromy
transformations in Wess–Zumino–Witten models, for SU(2) in [7] and then generalized for
semi-simple algebras in [8]. In these works some kind of generalized commutators (q-
commutators) appear. A natural goal is to find the properties of such q-commutators under
the guide of classical Lie algebras.

Another application of the quantum Lie algebra formalism appears in the theory of error
correction codes in quantum computation [9].

From a mathematical point of view, the quantum Lie algebras are useful because they allow
us to reduce problems on the infinite-dimensional quantum group to the finite-dimensional
quantum Lie algebra [10]. For instance, we show that the problem of finding Poincaré–
Birkhoff–Witt bases in the positive part of the Drinfeld–Jimbo quantum group of type Dn

positive is reduced to finding a representation of our finite-dimensional quantum Lie algebra
on the related q-symmetric algebra.

Just like the quantum groups, there are two classes of quantum Lie algebras; those related
to the Woronowicz quantum groups and those related to Drinfeld–Jimbo quantum groups.
While the first have well-established generalizations of the antisymmetry property and the
Jacobi identity, in the latter case different notions of quantum antisymmetry and quantum
Jacobi identity appear. One might say this is why the theory of Woronowicz’s quantum Lie
algebras has got more attention than that of Drinfeld–Jimbo. Because, after all, quantum
antisymmetry and quantum Jacobi identity could lead to a quantum Lie algebra theory by
analogy (or deformation) to the classical case.

In this paper we are interested in the construction of a quantum Lie algebra by
means of q-commutators for U+

q o(2n) the positive part of the Drinfeld–Jimbo quantum
group of type Dn. We show that such a construction is feasible and we obtain a finite-
dimensional vector space with an additional structure satisfying generalized antisymmetry
and a generalized Jacobi identity such that its universal enveloping algebra (generalized) is
U+

q o(2n). But, in addition to a binary operation, which is a quadratic–linear operator, we
obtain two other operators, which are quadratic–quadratic and quadratic–cubic, respectively.
However, we can prove the Poincaré–Birkhoff–Witt theorem over such structures. Further,
since a bilinear form is a quadratic–scalar operator, our results can be applied to Clifford
algebras.

In order to keep the notation under control, we make use of some diagrammatic notation
similar to the quivers (oriented graphs) appearing in the theory of representation of finite
algebras [11].

Quivers related to quantum groups were used by Cibils [12, 13] and Ringel [14]. However,
in this paper our approach is different. We start from a generalized Jacobi identity for the
generalized commutator f (x, y) = xy − σ(xy) which is valid in every associative algebra
analogous to the Jacobi identity that becomes the associative algebra, a Lie algebra with
commutator [x, y] = xy − yx.

The properties of our quantum o+(2n) are proved by mathematical induction over n.
First, the properties for (n = 4) quantum o+(8) follow by straightforward calculations, then
quantum o+(2n) for n > 4 satisfies the same equations as quantum o+(8) because, in some
sense, quantum o(2n) is covered by copies of quantum o+(8) (see theorem 2).

In the literature there are already some proposals for quantum Lie algebras of type Dn:
quantum Lie algebras defined by a generalization of the Friedrich criterion (characterization
of the Lie algebra structure by primitives) from Kharchenko [15], but without antisymmetry
or a Jacobi identity; a quantum Lie algebra due to Delius et al [16] with an antisymmetry but
without a Jacobi identity, among others.
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The organization of this paper is as follows. We start by applying a generalized Jacobi
identity to some generators of U+

q (sl4), the positive part of the Drinfeld–Jimbo quantum group
of type A3. In section 3 we define the structure of quantum o(2n) and prove that, in some sense,
U+

q o(8) is a universal enveloping algebra of quantum o+(8). A generalization for this result is
proved in section 4. The definition of a generalized Lie algebra (called σ -Lie algebra), which
also generalizes classical Clifford algebras, as well as a representation of our generalized Lie
algebra on the q-symmetric algebra, just like in the classical case, is given in section 5. In
section 6, we define morphisms of σ -Lie algebras and explain why the proof that quantum
o(2n) is a σ -Lie algebra, is an integer programming problem. Finally, in section 7, we discuss
the differences between quantum Lie algebras from [10, 16] and ours.

2. Non-braided identities and quantum U+(sl4)

Our starting point is the identity (1), which holds in every associative algebra. The notation
is the following. Assume that F is a commutative ring, L,M,N three F-modules and
f : M → N an F-linear map. We denote f1 = f ⊗ Id : M ⊗ L → N ⊗ L and
f2 = Id ⊗ f : L ⊗ M → L ⊗ N where Id : L → L is the identity map.

Proposition 1. Let A be an associative algebra, M a submodule of the module A, m
the multiplication map of A and σ : M ⊗ M → M ⊗ M a linear map. Then, if
f = m(Id − σ) : M ⊗ M → A, it follows

f (f1 − f2) = m(f1σ2 − f2σ1 + σf2 − σf1 + f2σ1σ2 − f1σ2σ1) − mm1(σ2σ1σ2 − σ1σ2σ1).

(1)

Proof. This proposition is proved by straightforward calculations. �

In fact, (1) is a generalization of the Jacobi identity, because it is equivalent to

f (f2 − f1 + f1σ2) = m ((f1σ2σ1 + f2σ1 − σf2 − σf1σ2) + (σf1 − f2σ1σ2))

+ mm1(σ2σ1σ2 − σ1σ2σ1) (2)

therefore, if σ stands for the usual flip x ⊗ y �→ y ⊗ x and M = A then (2) becomes the
classical Jacobi identity. A more general case is when M = A and σ is only required to satisfy
the braid equation σ2σ1σ2 = σ1σ2σ1 and

σf2 + σf1σ2 = f2σ1 + f1σ2σ1 and σf1 = f2σ1σ2 (3)

then (2) becomes the generalized Jacobi identity discovered by Woronowicz within the frame
of differential calculus on quantum groups [17]. Also, the conditions (3) appeared in [17].
The identity (1) was taken from [18].

It is well known that semi-simple Lie algebras are made of copies of sln pasted together
with additional relations. In the quantum case, the Drinfeld–Jimbo quantum groups are made
of copies of quantizations of the universal enveloping algebra of sln pasted together with
additional relations. The following q-commutators in U+

q (sl4) are a part of the relations of the
Drinfeld–Jimbo quantum group of type Dn.

Lemma 1. Let F be a commutative ring with unit and q ∈ F ∗. Let U+
q (sl4) be the associative

F-algebra generated by αi, i = 1, 2, 3, with relations

α1α3 − α3α1 = 0 αiα
2
j − (q + q−1)αjαiαj + α2

j αi = 0 |i − j | = 1
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then there exist generators αij ∈ U+
q (sl4), 1 � i < j � 4, with relations

m(α12 ⊗ α13 − σ(α12 ⊗ α13)) = 0 m(α12 ⊗ α23 − σ(α12 ⊗ α23)) = α13

m(α12 ⊗ α14 − σ(α12 ⊗ α14)) = 0 m(α12 ⊗ α24 − σ(α12 ⊗ α24)) = α14

m(α12 ⊗ α34 − σ(α12 ⊗ α34)) = 0 m(α13 ⊗ α23 − σ(α13 ⊗ α23)) = 0
m(α13 ⊗ α14 − σ(α13 ⊗ α14)) = 0 m(α13 ⊗ α34 − σ(α13 ⊗ α34)) = α14

m(α13 ⊗ α24 − σ(α13 ⊗ α24)) = (q − q−1) m(α23 ⊗ α14)

m(α23 ⊗ α14 − σ(α23 ⊗ α14)) = 0 m(α23 ⊗ α24 − σ(α23 ⊗ α24)) = 0
m(α23 ⊗ α34 − σ(α23 ⊗ α34)) = α24 m(α14 ⊗ α24 − σ(α14 ⊗ α24)) = 0
m(α14 ⊗ α34 − σ(α14 ⊗ α34)) = 0 m(α24 ⊗ α24 − σ(α24 ⊗ α34)) = 0

where m is the multiplication map of U+
q (sl4), σ (αij ⊗ αab) = qcij,abαab ⊗ αij , cij,ab =

δia − δib − δja + δjb and δ is the Kronecker delta.

Proof. First we define αi(i+1) = αi, i = 1, 2, 3, and α13 = α12α23 − q−1α23α12, α24 =
α23α34 − q−1α34α23. Then using (1) on α12 ⊗ α23 ⊗ α34, we get

α13α34 − q−1α34α13 = α12α24 − q−1α24α14.

We put α14 = α13α34 − q−1α34α13. Using again (1) on α12 ⊗ α23 ⊗ α24 and afterwards on
α13 ⊗ α23 ⊗ α34, we obtain

α13α24 − α24α13 = (q − q−1)α23α14

and so on. �

Using the same technique one can prove

Lemma 2. There exist generators βij ∈ U+
q (sl4), 1 � i < j � 4, with relations

β12β13 − q−1β13β12 = 0 β12β23 − qβ23β12 = β13

β12β14 − q−1β14β12 = 0 β12β24 − qβ24β12 = β14

β12β34 − β34β12 = 0 β13β23 − q−1β23β13 = 0

β13β14 − qβ13β23 = 0 β13β24 − β13β24 = 0

β13β34 − q−1β13β34 = β14 β23β14 − β23β14 = (q − q−1)β13β24

β23β24 − qβ23β24 = 0 β23β34 − q−1β23β34 = β24.

3. Quantum Dn positive

We are dealing with the Drinfeld–Jimbo quantum groups in Lusztig form [19] over
commutative rings. This means that, if F is a commutative ring with unit, q ∈ F ∗ and
G is the Dynkin diagram of type Dn, n � 4, with nodes labelled 1, 2, . . . , n and ramification
node labelled n − 2, then the Drinfeld–Jimbo quantum group of type Dn positive, denoted as
U+

q o(2n), is the associative F-algebra with 1, with generators E1, . . . , En and with relations

EiEj − EjEi = 0 if i is not linked to j in G

EiE
2
j − (q + q−1)EjEiEj + E2

j Ei = 0 if i is linked to j in G.

Let us take some formal letters, Mij and Sij , 1 � i < j � n (called canonical basic
elements of o+(2n)q), ordered according to the following rules:
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Mi(i+1) > · · · > Min > Sin > Si(i+1) > · · · > Si(n−1) 1 � i � n − 1 (4)

Sj(n−1) > M(j+1)(j+2) 1 � j � n − 2. (5)

Let Ln be the F-module with free basis given by the canonical basis of o+(2n)q . Now, we
define (1 � i < j � n, 1 � a < b � n)

dij,ab = δia + δbj + δja + δbi hij,ab = δai − δaj − δbj + δbi

cij,ab = δia − δib − δja + δjb gij,ab = δai − δbi + δja − δjb

where δ stands for the Kronecker delta.
The non-associative algebra o+(2n)q is a 5-tuple (Ln, σ, B(1), B(2), B(3)) where σ and

B(1), B(2), B(3) are linear maps; σ : Ln ⊗Ln → Ln ⊗Ln,B
(k) : Ln ⊗Ln → L⊗k

n , k = 1, 2, 3,
defined by the conditions σ 2 = Id, B(k)σ = −B(k) and

σ(Mij ⊗ Mab) = qcij,abMab ⊗ Mij if Mij > Mab

σ(Mij ⊗ Sab) = qhij,abSab ⊗ Mij if Mij > Sab

σ (Sij ⊗ Sab) = qdij,abSab ⊗ Sij if Sij > Sab

as well as

B(1)(Mij ⊗ Mab) = δjaMib − qδbiMaj B(1)(Mij ⊗ Sab) = δjaS
′
ib + δbjS

′
ai

B(1)(Sij ⊗ Sab) = 0

where

S′
ij =




Sij if i < j

−qSji if i > j

0 if i = j

and

B(2)(Mij ⊗ Sab) =




(q − q−1)q−1(Sij ⊗ Mab

−qSin ⊗ Man) if i < a j = b

−q(q − q−1)Sin ⊗ Min if i = a j = b < n

(q − q−1)Sin ⊗ Maj if i < a < j < b = n

(q − q−1)Sib ⊗ Maj if i < a < b < n j = n

−(q − q−1)Sai ⊗ Mbn if a < b < i < j = n

0 otherwise

B(2)(Sij ⊗ Sab) =



−(q − q−1)Sbn ⊗ Sai if a < b < i < j = n

(q − q−1)San ⊗ Sib if i < a < b < j = n

0 otherwise

B(2)(Mij ⊗ Mab) =
{
(q − q−1)Maj ⊗ Mib if i < a < j < b

0 otherwise

B(3)(Mij ⊗ Sab) =
{−q(q − q−1)Sin ⊗ Mbj ⊗ Min if i = a < b < j

0 otherwise

B(3)(Sij ⊗ Sab) =
{−q(q − q−1)Sib ⊗ Mjn ⊗ Sjn if i < j = a < b < n

0 otherwise.

Our main statement is that o+(2n)q is a generalized Lie algebra with generalized universal
enveloping isomorphic to the positive part of the Drinfeld–Jimbo quantum group of type Dn.
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λ

αk−1

αk

α2

α1

...

...�� ��

Figure 1. The tensorial product λα1 ⊗ α2 ⊗ · · · ⊗ αk .

Table 1. The map B(1). In this table and in the other tables the elements x, y are basic elements
such that x < y.

x⊗ y (1)(x⊗ y)

−q

Otherwise 0

B

In order to prove this we realized the elements of o+(2n)q in a quiver (oriented graph)
(see [11]). Despite quivers having an associative algebra structure, we are interested only in
the embedded linear structure. The associative structure plays a secondary role.

Let �n be a quiver of type An. We take two copies of the k-category k�n: Dn = k�n ⊕ k�n.
In the second copy we draw the paths as dashed paths while in the first copy we draw full paths.
A dashed path with origin i and terminus j will be labelled Sij and a full path with origin i
and terminus j will be labelled Mij . Furthermore, in order to avoid redundancy, instead of
drawing two sets of vertices, one for each copy of k�n, we are drawing just one set of vertices.
So the full and dashed paths may have common vertices.

The maps B(k), k = 1, 2, 3, appear in tables 1–3, respectively in graphical mode, where
a graph of the type of figure 1, for λ ∈ F , means the tensorial product λα1 ⊗ α2 ⊗ · · · ⊗ αk .

Theorem 1. The Drinfeld–Jimbo quantum group U+
q o(8) of type D4 positive is generated by

the elements of o+(8)q , with the relations

m(x ⊗ y) − mσ(x ⊗ y) = B(1)(x ⊗ y) + mB(2)(x ⊗ y) + mm1B
(3)(x ⊗ y)

where x, y ∈ o+(8)q and m is the multiplication map of U+
q o(8).

Proof. Almost all the commutators made of Mij , Sij , 1 � i < j � 4, can be obtained by
means of lemmas 1 and 2. The exceptions are M13 with S23,M13 with S12 and S12 with S23.
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Table 2. The map B(2).

x⊗ y B (2)(x⊗ y)

(q − q−1)

n
−q(q − q−1)

n

n n

(q − q−1)

n n

q−1(q − q−1)

n

+(q−1 − q)

n n
(q − q−1)

n n
(q − q−1)

n n
(q−1 − q)

Otherwise 0

In fact, in tables 4 and 5 each row represents an isomorphism from U+
q (sl4) to a subalgebra of

U+
q o(8) sending each head of the table to a generator in U+

q o(8). For instance, from table 4
(second row) and lemma 1 we get

M13S24 − S24M13 = (q − q−1)M23S14.

There are some canonical basic elements behaving as the generators βij in lemma 2 but with
1/q instead of q. This behaviour is shown in table 6.

In order to deal with the uncovered commutators we define an auxiliary map ρ: ρ

coincides with σ , however, when the commutation on x ⊗ y has the form xy − yx = ξab

with ξ �= 0 then the quadratic element a ⊗ b is included in ρ. For instance, ρ(M13 ⊗ M24) =
M24 ⊗ M13 + (q − q−1)M23 ⊗ M14. Then we can use equation (1) for ρ on S23 ⊗ M12 ⊗ M23

in order to obtain

S23M13 − mρ(S23 ⊗ M13) = −qS13M23 + qmρ(S13 ⊗ M23)



2278 C Bautista and M A Juaréz-Ramı́rez

Table 3. The map B(3).

x⊗ y B (3)(x⊗ y)

n n

q(q − q−1)2

n n

−q(q−1 − q)2

Otherwise 0

Table 4. Relations of lemma 1 type.

α12 α13 α23 α14 α24 α34

M12 M13 M23 M14 M24 M34

M12 M13 M23 S14 S24 S34

M12 M14 M24 −q−1S13 −q−1S23 S34

M12 S14 S24 −q−1S13 −q−1S23 M34

Table 5. Relations of lemma 2 type.

β12 β13 β23 β14 β24 β34

M34 −qM24 M23 S23 S24 S34

S34 −qS14 M13 S13 M14 M34

M24 −qM14 M12 S12 S14 S24

Table 6. Relations of dual lemma 2 type. The number q is replaced by 1/q in lemma 2.

β12 β13 β23 β14 β24 β34

M23 S24 S34 S12 S13 M14

M23 M24 M34 S12 S13 S14

where m is the multiplication map of U+
q o(8). Since ρ(S23 ⊗ M13) = qM13 ⊗ S23 + q2(q −

q−1)M14 ⊗ S24 and ρ(S13 ⊗ M23) = q−1M23 ⊗ S13 + (q − q−1)M24 ⊗ S14 then,

S23M13 − qM13S23 = S12 − q2(q − q−1)M14S24 − (q − q−1)S13M23 + q(q − q−1)M24S14.

In a similar way, using (1) on S23 ⊗ M24 ⊗ S14 one can prove

S23S12 − q−1S12S23 = (q − q−1)2S13M24S24

and, using (1) on M13 ⊗ M23 ⊗ S13,

M13S12 − qS12M13 = −q(q − q−1)2S14M23M14. �
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4. Canonical basic elements in U+
q o(2n)

We define inductively the following elements in U+
q o(2n):

Mi(i+1) = Ei 1 � i � n − 1
S(n−1)n = En

Mi(i+k) = Mi(i+k−1)M(i+k−1)(i+k) − q−1M(i+k−1)(i+k)Mi(i+k−1) 1 < k < n

S(n−1−k)n = M(n−1−k)(n−1−k+1)S(n−1−k+1)n − q−1S(n−1−k+1)nM(n−1−k)(n−1−k+1)

1 � k � n − 2
q−1Si(i+1) = MinS(i+1)n − q−1S(i+1)nMin 1 � i < n − 1
Si(i+k) = Mi(i+k−1)S(i+k−1)(i+k) − q−1S(i+k−1)(i+k)Mi(i+k−1) 1 < k < n.

Lemma 3.

M12M1b − qM1bM12 = 0 2 < b � n

Proof. This lemma is proved by mathematical induction on b. Let us put

[Mij ,Muv] = m(Id ⊗ Id − σ)(Mij ⊗ Mab)

where m is the multiplication map of U+
q o(2n). From the Jacobi identity (1) on M12 ⊗

M1(b−1) ⊗ M(b−1)b, we get

[M12, [M1(b−1),M(b−1)b]] − [[M12,M1(b−1)],M(b−1)b] = −q−1[[M12,M(b−1)b],M1(b−1)].

(6)

If b = 3 then the right-hand side of (6) is [M13,M13] = 0 and if b > 3 then the right-hand
side is zero because [M12,M(b−1)b] = 0 by definition. It follows, by mathematical induction
on b, that

0 = [M12, [M1(b−1),M(b−1)b]] = [M12,M1b]. �

Lemma 4.

M1jM1(j+1) − qM1(j+1)M1j = 0 1 < j � n (7)

M1jMk(k+1) − Mk(k+1)M1k = 0 j < k � n (8)

M1jS(n−1)n − S(n−1)nM1j = 0. (9)

Proof. This lemma is proved by mathematical induction on j . �

Note that (7) is equivalent to

M1jM
2
j (j+1) − (q + q−1)Mj(j+1)M1jMj(j+1) + M2

j (j+1)M1j = 0

therefore, equations (7)–(9) are the defining relations of U+
q (o(n − j + 2)).

Theorem 2. Let

B = {Mij |1 � i < j � n} ∪ {Sij |1 � i < j � n}.
If x, y ∈ B then there exists a subalgebra A of U+

q o(2n) such that

(i) x, y ∈ A and A 
 U+
q o(8) as algebras;

(ii) m(x ⊗ y) − mσ(x ⊗ y) = B(1)(x ⊗ y) + mB(2)(x ⊗ y) + mm1B
(3)(x ⊗ y), where m is

the multiplication map of the algebra U+
q o(2n).
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Proof.

(i) Assume x = γab and y = ρij with γ = M or S and ρ = M or S. If 1 < a, b � n and
1 < i, j � n, then x, y are in B, the subalgebra generated by Mi(i+1), 1 < i � n, and
S(n−1)n, which is isomorphic to U+

q (o(n − 1)). Therefore, using mathematical induction,
the theorem holds.
We can assume a = 1. If (i, j) �= (1, 2) and b > 2, then x, y are in the subalgebra
generated by M1b,Mbk, b < k � n, and S(n−1)n, which is isomorphic to U+

q (o(n− b + 2))

because of lemma 4. If (i, j) = (1, 2) and b > 2 then, since M2b,Mbn, Sbn are
in B 
 U+

q (o(n − 1)), we can use mathematical induction and lemma 3 to get that
M12,M2b,Mbn and Sbn are generators of a subalgebra isomorphic to U+

q o(8), which
contains x and y.

(ii) If x, y ∈ B, then, due to (i), there exists A, a subalgebra isomorphic to U+
q o(8), such that

x, y ∈ A. Because (ii) holds in A, it also holds in U+
q o(2n).

�

5. Generalized Lie algebra structures

Let L be a k-module and σ : L ⊗ L → L ⊗ L a linear map. We define the symmetric algebra
S(L) of L as the factor algebra of the tensor algebra L⊗ by the two-sided ideal generated by

x ⊗ y − σ(x ⊗ y) x, y ∈ L.

Further, suppose that there are s + 1 linear maps B(k) : L ⊗ L → L⊗k ⊗ L⊗, k = 0, 1, . . . , s.
Then define

R : L⊗ ⊗ L⊗ → L⊗ ⊗ L⊗

by

R(u ⊗ v) =




v ⊗ u if u = 1 or v = 1

σ(u ⊗ v) +
∑

k

B(k)(u ⊗ v) ⊗ 1 if u, v ∈ L

u ⊗ v otherwise.

Let j : L → S(L) be the natural embedding and L̂ = L ⊕ F .

Definition 1.

(i) A σ -Lie algebra is an F-module L together with the F-linear maps σ : L ⊗ L →
L ⊗ L,B(k) : L ⊗ L → L⊗k, 0 � k � s and - · - : L̂ ⊗ S(L) → S(L) such that

(a) σ 2 = Id and x · 1 = j (x) ∀x ∈ L;
(b) B(k)σ = −B(k) k � 0;
(c) (R1R2R1)(x ⊗ y ⊗ z) · 1 = (R2R1R2)(x ⊗ y ⊗ z) · 1,∀x, y, z ∈ L;

where (x1 ⊗ · · · ⊗ xa) · 1 = x1 · (· · · (xa · 1) · · ·) and 1 · z = z,∀z ∈ S(L).
(ii) The universal enveloping algebra U(L) of a σ -Lie algebra L is the factor algebra of L⊗,

the tensorial algebra of L, modulo the two-sided ideal generated by

x ⊗ y − σ(x ⊗ y) −
s∑

k=0

B(k)(x ⊗ y).
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Example 1. If we put B(k) = 0 for k �= 1 and σ stands for the usual flip x ⊗ y �→ y ⊗ x

then we get a classical Lie algebra with bracket B(1) since the so-called braid equation
R1R2R1 = R2R1R2 is equivalent, in this case, to the classical Jacobi identity. The map
- · - : L⊗ S(L) → S(L) is the classical representation of the Lie algebra on the symmetric
algebra related to the Poincaré–Birkhoff–Witt theorem [20].

It may seem that (i)(c) of definition 1 is an outer equation, however, it is an identity in L
because it can be written as

B(1)B
(1)
1 − B(1)B

(1)
2 + B(1)B

(1)
2 σ1 + B

(0)
1 − B

(0)
1 σ2 + B

(0)
1 σ2σ1 − B

(0)
2 + B

(0)
2 σ1 − B

(0)
2 σ1σ2

= j−1


σB

(1)
2 − σB

(1)
1 − σB

(1)
2 σ1 +

∑
k �=1

B(k)
(
B

(1)
2 − B

(1)
2 σ1 − B

(1)
1

)

+
∑
k�1

(
B

(k)

2 σ1σ2 + B
(k)

1 σ2 − B
(k)

1 σ2σ1
)

+
∑
k�2

(
B

(k)

2 − B
(k)

1

)

 · 1. (10)

Of course, as Vybornov noted [21], the antisymmetry (i)(b) of definition 1 is equivalent
to the invertibility of the map R. Note that our formulation of σ -Lie algebra is related to
Vybonov’s abstract definition of a quantum Lie algebra.

The map - · - can be constructed in a canonical way for some graded spaces.

Definition 2. We call a strict grading of a σ -Lie algebra L a direct decomposition of the form

L = ⊕i∈NLi

where each Li is a subspace of L such that

B(k)(Li ⊗ Lj ) ⊆ ⊕u1+···+uk�i+j−1Lu1 ⊗ · · · ⊗ Luk
∀i, j ∈ N. (11)

As usual, if x ∈ Li, x is said to be homogeneous of degree i and we put η(x) = i.

Suppose that for each i ∈ N there is a basis Bi consisting of homogeneous elements of
degree i, and moreover that B = ∪i∈NBi is a totally ordered set.

If � = (x1, . . . , xk) is a finite non-decreasing sequence of basic elements of B, we put
z� = j (x1) · · · j (xk) ∈ S(L), η(�) = η(x1) + · · · + η(xn) and z∅ = 1 ∈ S(L), η(z∅) = 0.
Furthermore, x � � = (x1, . . . , xk), for x ∈ B, means x � x1.

Lemma 5. Let Sp be the submodule of S(L) generated by z� such that η(�) � p.
If σ(x ⊗ y) = qxyy ⊗ x,∀x, y ∈ B, then there exists a k-morphism - · - : L ⊗ S(L) →

S(L) such that, for any xλ ∈ B,

(i) xλ · z� = j (xλ)z� if xλ � �;
(ii) xλ · z� − j (xλ)z� ∈ Sη(xλ)+η(�)−1.

Proof. A subset of {z�|� is a non-decreasing sequence of basic elements of L} is a basis of
S(L). So, we are going to define - · - on such a subset. We proceed with mathematical
induction on η(xλ) + η(�). If η(xλ) + η(�) = 1 then � = ∅. Then define xλ · z∅ = j (xλ).
Now assume that xλ′ · z�′ is defined for η(xλ′) + η(�′) < η(xλ) + η(�), satisfying (i) and (ii).
We have to define xλ · z� . There are two cases: xλ � � or xλ �� �.

Case λ � �: define xλ · � = j (xλ)z� .

Case λ �� �: we may write � = (xµ,N) where xµ � N and xλ > xµ and

B(k)(xλ ⊗ xµ) =
∑

i

ξixi1 ⊗ · · · ⊗ xik
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where each xij ∈ B and ξi ∈ F . Because of the induction hypothesis and (11) we can put
w = xλ · zN − zλzN ∈ Sη(xλ)+η(N)−1. Then xµ · w is already defined and we can also define

B(k)(xλ ⊗ xµ) · zN =
∑

i

ξixi1 · ( · · · (xik · zN

) · · · ).
Therefore we can define

xλ · z� = j (xλ)j (xµ)zN + qλµxµ · w +
∑

k

B(k)(xλ ⊗ xµ) · zN (12)

satisfying (ii). �

Example 2. Let V be an F-vectorial space and f : V ⊗V → k a symmetric bilinear form. Now
we define B(0) = 2f, σ : V ⊗ V → V ⊗ V, x ⊗ y �→ −y ⊗ x, and a trivial decomposition
V = ⊕iVi, V1 = V, Vi = 0 if i > 0. We get R1R2R1 = R2R1R2. Then, the universal
enveloping algebra of the σ -Lie algebra (V , σ, B(0)) is the classical Clifford algebra Cl(V ) of
V . Just as in the case of Lie algebras, the linear map - · - is the classical representation
on the symmetric algebra related to the Poincaré–Birkhoff–Witt theorem for Clifford
algebras.

Example 3. The space o+(8)q has a structure of σ -Lie algebra; the equation of (i)(c)
of the definition is obtained by straightforward calculations (using Mathematica [22]).
The decomposition (11) is induced by defining the canonical basic elements of o+(8)q as
homogeneous with the following degrees: η(M12) = 3, η(M13) = 3, η(M14) = 1, η(S14) =
1, η(S12) = 1, η(S13) = 1, η(M23) = 1, η(M24) = 1, η(S24) = 1, η(S23) = 3, η(M34) =
3, η(S34) = 3. From theorem 1 we get U(o+(8)q) 
 U+

q o(8) as associative algebras.

Proposition 2. Let L be a σ -Lie algebra with strict grading L = ⊕i∈NLi , let Bi be a basis of
Li,∀i ∈ N, and B = ∪i∈NBi . There exists a linear map - · - : L ⊗ S(L) → S(L) such that

xλ · (xµ · zN) − σ(xλ ⊗ xµ) · zN =
s∑

k=0

B(k)(xλ ⊗ xµ) · zN ∀xλ, xµ ∈ B. (13)

Proof. Natural modifications to the proof of lemma 1 in [20] can be done for the σ -Lie
algebra case (modifications of this kind were done in lemma V.2 of [23] for some generalized
Lie algebras called T-Lie algebras). Let - · - be the map defined in lemma 5. There are two
cases:

(i) xµ � N or xλ � N ;
(ii) xµ �� N and xλ �� N .

(i) Since antisymmetry holds we can assume xµ � N and xµ < xλ. Let M = (xµ,N);
then by definition (12),

qλµxµ · (xλ · zN) +
∑

k

B(k)(xλ ⊗ xµ) · zN

= qλµxµ · (j (xλ)zN) + qλµxµ · (xλ · zN − j (xλ)zN) +
∑

k

B(k)(xλ ⊗ xµ) · zN

= xλ · zM = xλ · (xµ · zN).

(ii) Let N = (xγ ,Q) where xγ � Q,xγ < xλ and xγ < xµ. Suppose that (13) holds
for any η(x ′

λ) + η(x ′
µ) + η(N ′) � r . For η(xλ) + η(xµ) + η(N) � r + 1 we have xµ · zQ =

j (xµ)zQ + w, where w ∈ Sη(xµ)+η(Q)−1. Then,
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xλ · (xµ · zN) = xλ · qµγ (xγ ⊗ xµ) · zQ + xλ ·
∑

k

B(k)(xµ ⊗ xγ ) · zQ

= qµγ qλγ xγ · (xλ · (xµ · zQ)) + qµγ

∑
k

B(k)(xλ ⊗ xγ ) · (xµ · zQ)

+ xλ ·
∑

k

B(k)(xµ ⊗ xγ ) · zQ

since, by calculation of the degree, (13) can be applied to xλ · (xγ · j (xµ)zQ) + xλ · (xγ · w) =
xλ · (xγ · (xµ · zQ)). Using that xλ, xµ are interchangeable and η(xλ) + η(xµ) + η(zQ) � r it
follows:

xλ · (xµ · zN) − qλµxµ · (xλ · zN) =
∑

k

B(k)(xλ ⊗ xµ) · zN +
∑

k

((
B

(k)

2 σ1σ2 − B
(k)

1

)

+ B
(k)

1 σ2 − B
(k)

2 σ1 +
(
B

(k)

2 − B
(k)

1 σ2σ1
))

(xλ ⊗ xµ ⊗ xγ ) · zQ

=
∑

k

B(k)(xλ ⊗ xµ) · zN + ((R2R1R2 − R1R2R1)(xλ ⊗ xµ ⊗ xγ )) · zQ.

Now, we can put equation (10) on xλ ⊗ xµ ⊗ xγ as A · 1 = B · 1 where A ∈ L and
B ∈ L⊗; then using the induction hypothesis, (10) means that A ≡ B (mod Js), where Js is
the two-sided ideal of the tensor algebra L⊗ generated by x ⊗y −σ(x ⊗y)−∑

k B(k)(x ⊗y),
such that η(x) + η(y) < s = η(xλ) + η(xµ) + η(xγ ).

Straightforward calculations show that

((R2R1R2 − R1R2R1)(xλ ⊗ xµ ⊗ xγ )) · zQ = A · zQ − B · zQ = A · zQ − A · zQ

since B ≡ A (mod Js) and using the induction hypothesis again.
Therefore

xλ · (xµ · zN) − qλµxµ · (xλ · zN) =
∑

k

B(k)(xλ ⊗ xµ) · zN .
�

Paralleling the classical Lie algebra theory, one can prove

Theorem 3. Let L be a σ -Lie algebra with strict grading L = ⊕i∈N Li . Then

U(L) 
 S(L)

as F-modules.

6. Morphisms and integer programming problems

Definition 3. If
(
Li, σi, B

(k)
i

)
is a σ -Lie algebra, i = 1, 2, then a linear morphism ϕ : L1 → L2

is called a σ -Lie algebra morphism if the following diagrams commute:

L1 ⊗ L1
B

(k)
1−−−→L⊗k

1

| |
ϕ⊗ϕ| ϕ⊗k |↓ ↓
L2 ⊗ L2

B
(k)
1−−−→L⊗k

2

k = 0, 1, . . .

L1 ⊗ L1
σ1−−−→ L1 ⊗ L1

| |
ϕ⊗ϕ| ϕ⊗ϕ|↓ ↓
L2 ⊗ L2

σ2−−−→ L2 ⊗ L2

where ϕ⊗k : L⊗
1 → L⊗

2 , ϕ⊗k = ϕ ⊗ · · · ⊗ ϕ (k factors).

Fix 1 � k < n − 1. Let o+(2n, k)q be the subalgebra of o+(2n)q obtained by dropping
the basic elements Mik,Mkj and Sik, Skj for 1 � i < k < j � n.

Proposition 3. There exists an isomorphism ϕ : o+(2n, k)q → o+(2(n−1))q of σ -Lie algebras
such that
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(i) ϕ(M(k−1)(k+1)) = M(k−1)k and ϕ(S(k−1)(k+1)) = S(k−1)k;
(ii) ϕ is order preserving.

Proof. Let f : {1, . . . , k̂, . . . , n} → {1, . . . , n − 1}, defined by

f (j) =
{
j if j < k

j − 1 if j > k

then we define ϕ : o+(2n, k)q → o+(2(n − 1))q, ϕ(Mij ) = Mf (i)f (j), ϕ(Sij ) = Sf (i)f (j).
Suppose that k < i in (4). Then,

ϕ(Mi(i+1)) = M(i−1)i > · · · > ϕ(Min) = M(i−1)(n−1) > ϕ(Sin) = S(i−1)(n−1) > ϕ(Si(i+1))

= S(i−1)i > · · · > ϕ(Si(n−1)) = S(i−1)(n−2)

which is the order definition (4) in o+(2(n − 1))q . In a similar way, if k > i,

· · · > Mi(k−1) > Mik > Mi(k+1) > · · · Min > Sin > · · · > Si(k−1) > Sik > Si(k+1) > · · ·
then,

· · · > ϕ(Mi(k−1)) = Mi(k−1) > ϕ(Mi(k+1)) = Mik > · · · > ϕ(Min) = Mi(n−1) > ϕ(Sin)

= Si(n−1) > · · · > ϕ(Si(k−1)) = Si(k−1) > ϕ(Si(k+1)) = Sik > · · · .
Again, this is the order (4) in o+(2(n − 1))q .

Now, suppose k < j in (5). Then,

ϕ(Sj(n−1)) = S(j−1)(n−2) > ϕ(M(j+1)(j+2)) = Mj(j+1)

and, if k > j ,

ϕ(Sj(n−1)) = Sj(n−2) > ϕ(M(j+1)(j+2)) = M(j+1)(j+2)

(since j + 1 �= k �= j + 2) which are the order definition (5) in o+(2(n − 1))q .
Therefore ϕ is order preserving.
Let us take βij , γab canonical basic elements (β = M or S and γ = M or S). From tables 1

and 2 we learn that the coefficient of B(k)(βij ⊗ γab) does not depend on ij, ab (k = 1, 2, 3).
Further, if we drop a vertex distinct from i, j, a and b, the paths do not change the graph shape.
Therefore

B(1)(ϕ ⊗ ϕ)(βij ⊗ γab) = ϕB(1)(βij ⊗ γab)

B(2)(ϕ ⊗ ϕ)(βij ⊗ γab) = (ϕ ⊗ ϕ)B(2)(βij ⊗ γab)

B(3)(ϕ ⊗ ϕ)(βij ⊗ γab) = (ϕ ⊗ ϕ ⊗ ϕ)B(3)(βij ⊗ γab). �

In order to define a σ -Lie algebra structure over the elements Eij , Sij , 1 � i < j � n,
first we have to define a strict grading. It suffices to define some degrees on them, satisfying
the linear inequalities given by tables 1–3: in each row of any table, the sum of the degrees
of the elements in the first column has to be greater than the sum of the degrees of the second
column. For instance, from 3, first row,

η(Mij ) + η(Sib) > η(Min) + η(Mjb) + η(Sin) if j < b < n.

Finding a solution to such a system is known as an integer programming problem (with the
aim function given by the trivial zero function); if a solution does exist then the inequality
system is called feasible. Note that if η(Mij ), η(Sij ), 1 � i < j � n, is a solution for the
case n, then constraint to 2 � i < j � n gives a solution for the case n−1. For example, since
solutions for n = 6 can be found using computer packages, the map - · - from lemma 5 can be
defined also for n = 4 and 5 and the Jacobi identity (i)(c) can be proved by straightforward
calculations.
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Proposition 4. If n = 4, 5 and 6 then o+(2n)q has a structure of σ -Lie algebra.

Although the following lemma is trivial, it is useful in order to prove the generalized
Jacobi identity on o+(2n)q , when the system is feasible.

Lemma 6. If γij , γab, γuv are paths of Dn, then there exists a subalgebra B of Dn such that

(i) γij , γab, γuv ∈ B;
(ii) B

φ
 D6;
(iii) φ(γij ), φ(γab), φ(γuv) are paths in D6.

Proposition 5. Let n � 4. If the inequality system described above is feasible, then o+(2n)q
has a strict grading and there exists a linear map - · - : L ⊗ S(o+(2n)q) → S(o+(2n)q), such
that the Jacobi identity (i)(c) of definition 1 holds.

Proof. The solution to the integer programming problem ensures the existence of the map
- · -. For n = 4, 5 and 6 the generalized Jacobi identity (i)(c) of definition 1 can be proved
by straightforward calculations. For n > 6 we can take x, y, z canonical basic elements of
o+(2n)q . Then, from lemma 6 and proposition 3, there exists a space L0 which is a σ -Lie
algebra such that

(i) x, y, z ∈ L0;

(ii) L0
ϕ
 o+(12)q as σ -Lie algebras.

From the generalized Jacobi identity on o+(12)q , it follows the Jacobi identity on x, y, z.
�

If we put q = 1 then B(2) = 0 and B(3) = 0 while B(1) is the classical bracket of o+(2n)

where Mij |q=1 = e(i+n)(j+n) − eji and Sij |q=1 = e(i+n)j − e(j+n)i (euv, 1 � u, v � 2n, the
canonical basis of gl2n).

Theorem 4.

(i) U(o+(2n)q) 
 U+
q o(2n) as associative algebras;

(ii) dimF o+(2n)q = n2 − n;
(iii) if q → 1 then o+(2n)q → o+(2n).
(iv) If the inequality system described above is feasible, then

(a) a structure of σ -Lie algebra can be defined on o+(2n)q;
(b) the universal enveloping algebra U+

qo(2n) has a linear basis formed by the monomials
made of finite non-decreasing sequences of canonical basic elements of o+(2n)q .

7. About other quantum Lie algebras

The quantum Lie algebras of [16] are finite-dimensional spaces with a binary operation
(called quantum Lie bracket) which are invariant under the adjoint representation of the Hopf
algebra structure (ad-invariance) and also have a q-antisymmetry property. Of course, q-
antisymmetry is a generalization of the classical antisymmetry property, while one could say
that the generalized Jacobi identity is the property of the quantum Lie bracket of being a
module morphism on the quantum group. Actually, such a property is used to obtain a grading
of the quantum Lie algebras by quantum roots, just as the classical Jacobi identity is used to
obtain a grading of the Lie algebras by its roots. However, a polynomial style quantum Jacobi
identity is expected.
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Our Jacobi identity (definition 1 (i)(c)) is of this type. Therefore, a natural question
is if Delius et al’s quantum Lie algebra satisfies it. The answer is negative, at least in
a direct way. Because our definition of the Jacobi identity uses a generalization of the
classical flip ρ : x ⊗ y �→ y ⊗ x and, besides a binary operation, additional higher degree
operators: B(k) : L2⊗ → Lk⊗, k = 2, 3. The flip used in [16] is the classical one, since the
quantum groups used there are Hopf algebras which are not braided. For instance, the adjoint
representation is defined by

ad(x)(y) = ρ2S2(� ⊗ Id)(x ⊗ y) (14)

where � is the coproduct and S is the antipode. Besides there are no q-commutators of higher
order; this is a remarkable fact in the theory of [16], but from our point of view this leads us
to a classical Jacobi identity which does not hold in the quantum Lie algebras of [16].

Reciprocally, our quantum Lie algebras do not satisfy ad-invariance. For example, the
vectorial subspace

(
sl+

n+1

)
q

generated by Mij 1 � i < j � n + 1, is a σ -Lie algebra of type An

positive. This means that U
((

sl+
n+1

)
q

)
is an associative algebra isomorphic to U+

q (sln+1) which
is the positive part of the Drinfeld–Jimbo quantum group of type An positive. In fact U+

q (sln+1)

is a braided Hopf algebra [24], with a non-involutive braid given by

σ(Mij ⊗ Mab) = qcij,abMab ⊗ Mij

where cij,ab = δia − δib − δja + δjb (see [18]). We can calculate the braided version of (14) on
M13 ⊗ M24, with σ instead of ρ and � the braided coproduct of U+

q (sln+1), in order to obtain
that

φ(Mij ) = Mij ⊗ 1 + 1 ⊗ Mij + (Id − σ 2)
∑

i<k<j

Mik ⊗ Mkj

then ad(M13)(M24) �∈ (
sl+

n+1

)
q
.

Also, there is not a direct link to the quantum Lie algebras of [10]. It can be proved that
U+

q o(2n) is a braided Hopf algebra with braid given by the non-involutive operator τ ,

τ (Ei ⊗ Ej) = qaij Ej ⊗ Ei

coproduct φ such that each generator Ei is a primitive element, where C = (aij ) is the
Cartan matrix of type Dn. The map τ can be extended to U+

q o(2n) by means of the following
equations:

τρ = τ τm1 = m2τ1τ2 τm2 = m1τ2τ1

where m is the multiplication map of U+
q o(2n), because C is a symmetric matrix. Note that

according to the deformation theory [25], in order to get a deformation of a Hopf algebra it
suffices to deform the product and the coproduct.

Therefore φ
((

sl+
n+1

)
q

) ⊂ (
sl+

n+1

)
q
⊗ (

sl+
n+1

)
q
. However, φ(o+(2n)q) �⊂ o+(2n)q ⊗o+(2n)q

because, for instance, φ(S23) �∈ o+(2n)q ⊗o+(2n)q . We conclude that o+(2n)q is not a braided
Lie algebra.
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[5] Delius G W, Hüffmann A, Gould M D and Zhang Y Z 1996 Quantum Lie algebras associated to Uq(gln) and

Uq(sln) J. Phys. A: Math. Gen. 29 5611–8
[6] Sudbery A 1996 SUq(n) gauge theory Phys. Lett. B 375 75–80
[7] Gomez C and Sierra G 1990 Quantum group meaning of the Coulomb gas Phys. Lett. B 240 149
[8] Ramı́rez C, Ruegg H and Ruiz-Altaba M 1991 The contour picture of quantum groups: conformal field theories

Nucl. Phys. B 364 195–233
[9] Durdevich M, Makaruk H E and Owczarek R 2001 Generalized noiseless quantum codes utilizing quantum

enveloping algebras J. Phys. A: Math. Gen 34 1423–37
[10] Majid S 1994 Quantum and braided Lie algebras J. Geom. Phys. 13 307–56
[11] Gabriel P and Roiter A V 1997 Representations of Finite-Dimensional Algebras (Berlin: Springer) p 17
[12] Cibils C 1993 A quiver quantum group Commun. Math. Phys. 157 459–77
[13] Cibils C and Rosso M 2000 Hopf quivers Preprint math.QA/0009106. Lecture video at MSRI (1999)

(www.msri.org)
[14] Ringel C M 1996 PBW-basis of quantum groups J. Reine Angew. Math. 470 51–88
[15] Kharchenko V K 2002 A combinatorial approach to quantification of Lie algebras Pac. J. Math. 203 191–233
[16] Delius G W, Gardner C and Gould M D 1998 The structure of quantum Lie algebras for the classical series

Bl, Cl and Dl J. Phys. A: Math. Gen 31 1995–2020
[17] Woronowicz S L 1989 Differential calculus on compact matrix pseudogroups (quantum groups) Commun. Math.

Phys. 122 125–70
[18] Bautista C 2001 Braided identities, quantum groups and Clifford algebras Int. J. Theor. Phys. 40 55–65
[19] Lusztig G 1988 Quantum deformations of certain simple modules over enveloping algebras Adv. Math. 70

237–49
[20] Bourbaki N 1989 Lie Groups and Lie Algebras (London: Springer) ch 1–3 p 19
[21] Vybornov M 1999 Solutions of the Yang–Baxter equation and quantum sl(2) J. Knot Theory Ramifications 8

953–61
[22] Wolfram S 1993 Mathematica. A System for Doing Mathematics by Computer 2nd edn (Reading, MA: Addison-

Wesley)
[23] Bautista C 1998 A Poincaré–Birkhoff–Witt theorem for generalized Lie color algebras J. Math. Phys. 39

3828–43
[24] Majid S 1995 Foundations of Quantum Group Theory (Cambridge: Cambridge University Press)
[25] Gerstenhaber M and Schack S D 1992 Algebras, bialgebras, quantum groups and algebraic deformations

Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Contemporary
Mathematics 134) ed M Gerstenhaber and J Stasheff (Providence, RI: American Mathematical Society)
pp 51–92


